ﻻ يوجد ملخص باللغة العربية
We analyze the combined effects of hydrodynamic fluctuations and chiral magnetic effect (CME) for a chiral medium in the presence of a background magnetic field. Based on the recently developed non-equilibrium effective field theory, we show fluctuations give rise to a CME-related positive contribution to magnetoresistance, while the early studies without accounting for the fluctuations find a CME-related negative magnetoresistance. At zero axial relaxation rate, the fluctuations contribute to the transverse conductivity in addition to the longitudinal one.
We investigate the time-dependent perturbations of strongly coupled $mathcal{N} = 4$ SYM theory at finite temperature and finite chemical potential with a second order phase transition. This theory is modelled by a top-down Einstein-Maxwell-dilaton d
Layered van der Waals semimetallic $T_mathrm{d}$-WTe$_{2}$, exhibiting intriguing properties which include non-saturating extreme positive magnetoresistance (MR) and tunable chiral anomaly, has emerged as model topological type-II Weyl semimetal syst
In principle, there is no obstacle to gapping fermions preserving any global symmetry that does not suffer a t Hooft anomaly. In practice, preserving a symmetry that is realised on fermions in a chiral manner necessitates some dynamics beyond simple
From detailed angle-resolved NMR and Meissner measurements on a ferromagnetic (FM) superconductor UCoGe (T_Curie ~ 2.5 K and T_SC ~ 0.6 K), we show that superconductivity in UCoGe is tightly coupled with longitudinal FM spin fluctuations along the c
Axial anomaly and nesting is elucidated in the context of the inhomogeneous chiral phase. Using the Gross-Neveu models in 1+1 dimensions, we shall discuss axial anomaly and nesting from two different points of view: one is homogeneous chiral transiti