ﻻ يوجد ملخص باللغة العربية
We study the following rainbow version of subgraph containment problems in a family of (hyper)graphs, which generalizes the classical subgraph containment problems in a single host graph. For a collection $textbf{G}={G_1, G_2,ldots, G_{m}}$ of not necessarily distinct graphs on the same vertex set $[n]$, a (sub)graph $H$ on $[n]$ is rainbow if $E(H)subseteq bigcup_{iin [m]}E(G_i)$ and $|E(H)cap E(G_i)|le 1$ for $iin[m]$. Note that if $|E(H)|=m$, then a rainbow $H$ consists of exactly one edge from each $G_i$. Our main results are on rainbow clique-factors in (hyper)graph systems with minimum $d$-degree conditions. In particular, (1) we obtain a rainbow analogue of an asymptotical version of the Hajnal--Szemer{e}di theorem, namely, if $tmid n$ and $delta(G_i)geq(1-frac{1}{t}+varepsilon)n$ for each $iin[frac{n}{t}binom{t}{2}]$, then $textbf{G}$ contains a rainbow $K_t$-factor; (2) we prove that for $1le dle k-1$, essentially a minimum $d$-degree condition forcing a perfect matching in a $k$-graph also forces rainbow perfect matchings in $k$-graph systems. The degree assumptions in both results are asymptotically best possible (although the minimum $d$-degree condition forcing a perfect matching in a $k$-graph is in general unknown). For (1) we also discuss two direct
A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. Our main result implies that, given any optimal colouring of a sufficiently large complete graph $K_{2n}$, there exists a decomposition of $K_{2n}$ into is
A rainbow spanning tree in an edge-colored graph is a spanning tree in which each edge is a different color. Carraher, Hartke, and Horn showed that for $n$ and $C$ large enough, if $G$ is an edge-colored copy of $K_n$ in which each color class has si
A spanning tree of an edge-colored graph is rainbow provided that each of its edges receives a distinct color. In this paper we consider the natural extremal problem of maximizing and minimizing the number of rainbow spanning trees in a graph $G$. Su
An edge-colored graph $G$ is called textit{rainbow} if every edge of $G$ receives a different color. Given any host graph $G$, the textit{anti-Ramsey} number of $t$ edge-disjoint rainbow spanning trees in $G$, denoted by $r(G,t)$, is defined as the m
We survey recent advances in the theory of graph and hypergraph decompositions, with a focus on extremal results involving minimum degree conditions. We also collect a number of intriguing open problems, and formulate new ones.