ترغب بنشر مسار تعليمي؟ اضغط هنا

Safety Metrics for Semantic Segmentation in Autonomous Driving

85   0   0.0 ( 0 )
 نشر من قبل Chih-Hong Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Within the context of autonomous driving, safety-related metrics for deep neural networks have been widely studied for image classification and object detection. In this paper, we further consider safety-aware correctness and robustness metrics specialized for semantic segmentation. The novelty of our proposal is to move beyond pixel-level metrics: Given two images with each having N pixels being class-flipped, the designed metrics should, depending on the clustering of pixels being class-flipped or the location of occurrence, reflect a different level of safety criticality. The result evaluated on an autonomous driving dataset demonstrates the validity and practicality of our proposed methodology.



قيم البحث

اقرأ أيضاً

Semantic segmentation is important for many real-world systems, e.g., autonomous vehicles, which predict the class of each pixel. Recently, deep networks achieved significant progress w.r.t. the mean Intersection-over Union (mIoU) with the cross-entr opy loss. However, the cross-entropy loss can essentially ignore the difference of severity for an autonomous car with different wrong prediction mistakes. For example, predicting the car to the road is much more servery than recognize it as the bus. Targeting for this difficulty, we develop a Wasserstein training framework to explore the inter-class correlation by defining its ground metric as misclassification severity. The ground metric of Wasserstein distance can be pre-defined following the experience on a specific task. From the optimization perspective, we further propose to set the ground metric as an increasing function of the pre-defined ground metric. Furthermore, an adaptively learning scheme of the ground matrix is proposed to utilize the high-fidelity CARLA simulator. Specifically, we follow a reinforcement alternative learning scheme. The experiments on both CamVid and Cityscapes datasets evidenced the effectiveness of our Wasserstein loss. The SegNet, ENet, FCN and Deeplab networks can be adapted following a plug-in manner. We achieve significant improvements on the predefined important classes, and much longer continuous playtime in our simulator.
We present the WoodScape fisheye semantic segmentation challenge for autonomous driving which was held as part of the CVPR 2021 Workshop on Omnidirectional Computer Vision (OmniCV). This challenge is one of the first opportunities for the research co mmunity to evaluate the semantic segmentation techniques targeted for fisheye camera perception. Due to strong radial distortion standard models dont generalize well to fisheye images and hence the deformations in the visual appearance of objects and entities needs to be encoded implicitly or as explicit knowledge. This challenge served as a medium to investigate the challenges and new methodologies to handle the complexities with perception on fisheye images. The challenge was hosted on CodaLab and used the recently released WoodScape dataset comprising of 10k samples. In this paper, we provide a summary of the competition which attracted the participation of 71 global teams and a total of 395 submissions. The top teams recorded significantly improved mean IoU and accuracy scores over the baseline PSPNet with ResNet-50 backbone. We summarize the methods of winning algorithms and analyze the failure cases. We conclude by providing future directions for the research.
Semantic segmentation remains a computationally intensive algorithm for embedded deployment even with the rapid growth of computation power. Thus efficient network design is a critical aspect especially for applications like automated driving which r equires real-time performance. Recently, there has been a lot of research on designing efficient encoders that are mostly task agnostic. Unlike image classification and bounding box object detection tasks, decoders are computationally expensive as well for semantic segmentation task. In this work, we focus on efficient design of the segmentation decoder and assume that an efficient encoder is already designed to provide shared features for a multi-task learning system. We design a novel efficient non-bottleneck layer and a family of decoders which fit into a small run-time budget using VGG10 as efficient encoder. We demonstrate in our dataset that experimentation with various design choices led to an improvement of 10% from a baseline performance.
Motion prediction of vehicles is critical but challenging due to the uncertainties in complex environments and the limited visibility caused by occlusions and limited sensor ranges. In this paper, we study a new task, safety-aware motion prediction w ith unseen vehicles for autonomous driving. Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map that indicates the earliest time when each location can be occupied by either seen and unseen vehicles. The ability to predict unseen vehicles is critical for safety in autonomous driving. To tackle this challenging task, we propose a safety-aware deep learning model with three new loss functions to predict the earliest occupancy map. Experiments on the large-scale autonomous driving nuScenes dataset show that our proposed model significantly outperforms the state-of-the-art baselines on the safety-aware motion prediction task. To the best of our knowledge, our approach is the first one that can predict the existence of unseen vehicles in most cases. Project page at {url{https://github.com/xrenaa/Safety-Aware-Motion-Prediction}}.
Semantic segmentation (SS) is an important perception manner for self-driving cars and robotics, which classifies each pixel into a pre-determined class. The widely-used cross entropy (CE) loss-based deep networks has achieved significant progress w. r.t. the mean Intersection-over Union (mIoU). However, the cross entropy loss can not take the different importance of each class in an self-driving system into account. For example, pedestrians in the image should be much more important than the surrounding buildings when make a decisions in the driving, so their segmentation results are expected to be as accurate as possible. In this paper, we propose to incorporate the importance-aware inter-class correlation in a Wasserstein training framework by configuring its ground distance matrix. The ground distance matrix can be pre-defined following a priori in a specific task, and the previous importance-ignored methods can be the particular cases. From an optimization perspective, we also extend our ground metric to a linear, convex or concave increasing function $w.r.t.$ pre-defined ground distance. We evaluate our method on CamVid and Cityscapes datasets with different backbones (SegNet, ENet, FCN and Deeplab) in a plug and play fashion. In our extenssive experiments, Wasserstein loss demonstrates superior segmentation performance on the predefined critical classes for safe-driving.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا