ﻻ يوجد ملخص باللغة العربية
The integration of multi-access edge computing (MEC) and RAFT consensus makes it feasible to deploy blockchain on trustful base stations and gateways to provide efficient and tamper-proof edge data services for Internet of Things (IoT) applications. However, reducing the latency of storing data on blockchain remains a challenge, especially when an anomalytriggered data flow in a certain area exceeds the block generation speed. This letter proposes an intelligent transaction migration scheme for RAFT-based private blockchain in IoT applications to migrate transactions in busy areas to idle regions intelligently. Simulation results show that the proposed scheme can apparently reduce the latency in high data flow circumstances.
In the Internet-of-Things, the number of connected devices is expected to be extremely huge, i.e., more than a couple of ten billion. It is however well-known that the security for the Internet-of-Things is still open problem. In particular, it is di
With the prevalence of Internet of Things (IoT) applications, IoT devices interact closely with our surrounding environments, bringing us unparalleled smartness and convenience. However, the development of secure IoT solutions is getting a long way l
This paper presents a comprehensive survey of the existing blockchain protocols for the Internet of Things (IoT) networks. We start by describing the blockchains and summarizing the existing surveys that deal with blockchain technologies. Then, we pr
Attacks targeting several millions of non-internet based application users are on the rise. These applications such as SMS and USSD typically do not benefit from existing multi-factor authentication methods due to the nature of their interaction inte
Industrial processes rely on sensory data for critical decision-making processes. Extracting actionable insights from the collected data calls for an infrastructure that can ensure the trustworthiness of data. To this end, we envision a blockchain-ba