ﻻ يوجد ملخص باللغة العربية
The Boltzmann equation is a fundamental kinetic equation that describes the dynamics of dilute gas. In this paper we study the regularity of both dynamical and steady Boltzmann equation in strictly convex domain with the Cercignani-Lampis (C-L) boundary condition. The C-L boundary condition describes the intermediate reflection law between diffuse reflection and specular reflection via two accommodation coefficients. We construct local weighted $C^1$ dynamical solution using repeated interaction through the characteristic. When we assume small fluctuation to the wall temperature and accommodation coefficients, we construct weighted $C^1$ steady solution.
We use novel integral representations developed by the second author to prove certain rigorous results concerning elliptic boundary value problems in convex polygons. Central to this approach is the so-called global relation, which is a non-local equ
We show that convex viscosity solutions of the Lagrangian mean curvature equation are regular if the Lagrangian phase has Holder continuous second derivatives.
In this paper, we continue our study of the Boltzmann equation by use of tools originating from the analysis of dispersive equations in quantum dynamics. Specifically, we focus on properties of solutions to the Boltzmann equation with collision kerne
The Vlasov-Poisson-Boltzmann equation is a classical equation governing the dynamics of charged particles with the electric force being self-imposed. We consider the system in a convex domain with the Cercignani-Lampis boundary condition. We construc
We prove that Gevrey regularity is propagated by the Boltzmann equation with Maxwellian molecules, with or without angular cut-off. The proof relies on the Wild expansion of the solution to the equation and on the characterization of Gevrey regularity by the Fourier transform.