ﻻ يوجد ملخص باللغة العربية
Direct dynamical mass measurements of stars with masses above 30 M${}_odot$ are rare. This is the result of the low yield of the upper initial mass function and the limited number of such systems in eclipsing binaries. Long-period, double-lined spectroscopic binaries that are also resolved astrometrically offer an alternative for obtaining absolute masses of stellar objects. 9 Sgr is one such long-period, high-mass binary. Unfortunately, a large amount of tension exists between its total dynamical mass inferred from radial velocity measurements and that from astrometric data. We obtained the astrometric orbit from VLTI/PIONIER and VLTI/GRAVITY interferometric measurements. Using archival and new spectroscopy, we performed a grid-based spectral disentangling search to constrain the semi-amplitudes of the radial velocity curves. We computed atmospheric parameters and surface abundances by adjusting textsc{fastwind} atmosphere models and we compared our results with evolutionary tracks computed with the Bonn Evolutionary Code (BEC). Grid spectral disentangling of 9 Sgr supports the presence of a 53 M${}_odot$ primary and a 39 M${}_odot$ secondary. Comparison with BEC evolutionary tracks shows the components of 9 Sgr are most likely coeval with an age of roughly 1 Myr. Our analysis clears up the contradiction between mass and orbital inclination estimates reported in previous studies. We detect the presence of significant CNO-processed material at the surface of the primary, suggesting enhanced internal mixing compared to currently implemented in the BEC models. The present measurements provide a high-quality high-mass anchor to validate stellar evolution models and to test the efficiency of internal mixing processes.
We present multi-epoch spectroscopic observations of the massive binary system WR21a, which include the January 2011 periastron passage. Our spectra reveal multiple SB2 lines and facilitate an accurate determination of the orbit and the spectral type
Context. ABDoradus is the main system of the ABDoradus moving group. It is a quadruple system formed by two widely separated binaries of pre-main-sequence (PMS) stars: ABDor A/C and ABDor Ba/Bb. The pair ABDor A/C has been extensively studied and its
We initiated long-term optical interferometry monitoring of the diameters of unstable yellow hypergiants (YHG) with the goal of detecting both the long-term evolution of their radius and shorter term formation related to large mass-loss events. We ob
The long-period, highly eccentric O-star binary 9 Sgr, known for its non-thermal radio emission and its relatively bright X-ray emission, went through its periastron in 2013. Such an event can be used to observationally test the predictions of the th
We present new ALMA observations of CO $J$=2$-$1 line emission from the DQ Tau circumbinary disk. These data are used to tomographically reconstruct the Keplerian disk velocity field in a forward-modeling inference framework, and thereby provide a dy