ترغب بنشر مسار تعليمي؟ اضغط هنا

An Early-Time Optical and Ultraviolet Excess in the type-Ic SN 2020oi

268   0   0.0 ( 0 )
 نشر من قبل Alexander Gagliano
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present photometric and spectroscopic observations of Supernova 2020oi (SN 2020oi), a nearby ($sim$17 Mpc) type-Ic supernova (SN Ic) within the grand-design spiral M100. We undertake a comprehensive analysis to characterize the evolution of SN 2020oi and constrain its progenitor system. We detect flux in excess of the fireball rise model $delta t approx 2.5$ days from the date of explosion in multi-band optical and UV photometry from the Las Cumbres Observatory and the Neil Gehrels Swift Observatory, respectively. The derived SN bolometric luminosity is consistent with an explosion with $M_{rm ej} = 0.81 pm 0.03 M_{odot}$, $E_{k}= 1.40 pm 0.19 times 10^{51} rm{erg} rm{s}^{-1}$, and $M_{rm Ni56} = 0.08 pm 0.02 M_{odot}$. Inspection of the events decline reveals the highest $Delta m_{15,rm{bol}}$ reported for a stripped-envelope event to date. Modeling of optical spectra near event peak indicates a partially mixed ejecta comparable in composition to the ejecta observed in SN 1994I, while the earliest spectrum shows signatures of a possible interaction with material of a distinct composition surrounding the SN progenitor. Further, Hubble Space Telescope (HST) pre-explosion imaging reveals a stellar cluster coincident with the event. From the cluster photometry, we derive the mass and age of the SN progenitor using stellar evolution models implemented in the BPASS library. Our results indicate that SN 2020oi occurred in a binary system from a progenitor of mass $M_{rm ZAMS} approx 9.5 pm 1.0 M_{odot}$, corresponding to an age of $27 pm 7$ Myr. SN 2020oi is the dimmest SN Ic event to date for which an early-time flux excess has been observed, and the first in which an early excess is unlikely to be associated with shock-cooling.



قيم البحث

اقرأ أيضاً

We present the results of ALMA band 3 observations of a nearby type Ic supernova (SN) 2020oi. Under the standard assumptions on the SN-circumstellar medium (CSM) interaction and the synchrotron emission, the data indicate that the CSM structure devia tes from a smooth distribution expected from the steady-state mass loss in the very vicinity of the SN (~10^{15} cm), which is then connected to the outer smooth distribution (~10^{16} cm). This structure is further confirmed through the light curve modeling of the whole radio data set as combined with data at lower frequency previously reported. Being an explosion of a bare carbon-oxygen (C+O) star having a fast wind, we can trace the mass-loss history of the progenitor of SN 2020oi in the final year. The inferred non-smooth CSM distribution corresponds to fluctuations on the sub-year time scale in the mass-loss history toward the SN explosion. Our finding suggests that the pre-SN activity is likely driven by the accelerated change in the nuclear burning stage in the last moments just before the massive stars demise. The structure of the CSM derived in this study is beyond the applicability of the other methods at optical wavelengths, highlighting an importance and uniqueness of quick follow-up observations of SNe by ALMA and other radio facilities.
82 - Ori D. Fox 2015
Supernovae Type Iax (SNe Iax) are less energetic and less luminous than typical thermonuclear explosions. A suggested explanation for the observed characteristics of this subclass is a binary progenitor system consisting of a CO white dwarf primary a ccreting from a helium star companion. A single-degenerate explosion channel might be expected to result in a dense circumstellar medium (CSM), although no evidence for such a CSM has yet been observed for this subclass. Here we present recent Spitzer observations of the SN Iax 2014dt obtained by the SPIRITS program nearly one year post-explosion that reveal a strong mid-IR excess over the expected fluxes of more normal SNe Ia. This excess is consistent with 1E-5 M_solar of newly formed dust, which would be the first time that newly formed dust has been observed to form in a normal Type Ia. The excess, however, is also consistent with a dusty CSM that was likely formed in pre-explosion mass-loss, thereby suggesting a single degenerate progenitor system. Compared to other SNe Ia that show significant shock interaction (SNe Ia-CSM) and interacting core-collapse events (SNe IIn), this dust shell in SN 2014dt is less massive. We consider the implications that such a pre-existing dust shell has for the progenitor system, including a binary system with a mass donor that is a red giant, a red supergiant, and an asymptotic giant branch star.
SN 2017ein is a narrow-lined Type Ic SN that was found to share a location with a point-like source in the face on spiral galaxy NGC 3938 in pre-supernova images, making SN 2017ein the first credible detection of a Type Ic progenitor. Results in the literature suggest this point-like source is likely a massive progenitor of 60-80 M$_{odot}$, depending on if the source is a binary, a single star, or a compact cluster. Using new photometric and spectral data collected for 200 days, including several nebular spectra, we generate a consistent model covering the photospheric and nebular phase using a Monte Carlo radiation transport code. Photospheric phase modelling finds an ejected mass 1.2-2.0 M$_{odot}$ with an $E_mathrm{k}$ of $sim(0.9 pm0.2)times 10^{51}$ erg, with approximately 1 M$_{odot}$ of material below 5000 km s$^{-1}$ found from the nebular spectra. Both photospheric and nebular phase modelling suggests a $^{56}$Ni mass of 0.08-0.1 M$_{odot}$. Modelling the [OI] emission feature in the nebular spectra suggests the innermost ejecta is asymmetric. The modelling results favour a low mass progenitor of to 16-20 M$_{odot}$, which is in disagreement with the pre-supernova derived high mass progenitor. This contradiction is likely due to the pre-supernova source not representing the actual progenitor.
We report initial observations and analysis on the Type IIb SN~2016gkg in the nearby galaxy NGC~613. SN~2016gkg exhibited a clear double-peaked light curve during its early evolution, as evidenced by our intensive photometric follow-up campaign. SN~2 016gkg shows strong similarities with other Type IIb SNe, in particular with respect to the he~emission features observed in both the optical and near infrared. SN~2016gkg evolved faster than the prototypical Type~IIb SN~1993J, with a decline similar to that of SN~2011dh after the first peak. The analysis of archival {it Hubble Space Telescope} images indicate a pre-explosion source at SN~2016gkgs position, suggesting a progenitor star with a $sim$mid F spectral type and initial mass $15-20$msun, depending on the distance modulus adopted for NGC~613. Modeling the temperature evolution within $5,rm{days}$ of explosion, we obtain a progenitor radius of $sim,48-124$rsun, smaller than that obtained from the analysis of the pre-explosion images ($240-320$rsun).
144 - Maryam Modjaz 2015
We present the first systematic investigation of spectral properties of 17 Type Ic Supernovae (SNe Ic), 10 broad-lined SNe Ic (SNe Ic-bl) without observed Gamma-Ray Bursts (GRBs) and 11 SNe Ic-bl with GRBs (SN-GRBs) as a function of time in order to probe their explosion conditions and progenitors. We analyze a total of 407 spectra, which were drawn from published spectra of individual SNe as well as from the densely time-sampled spectra data of Modjaz et al. (2014). In order to quantify the diversity of the SN spectra as a function of SN subtype, we construct average spectra of SNe Ic, SNe Ic-bl without GRBs and SNe Ic-bl with GRBs. We find that SN 1994I is not a typical SN Ic, in contrast to common belief, while the spectra of SN 1998bw/GRB 980425 are representative of mean spectra of SNe Ic-bl. We measure the ejecta absorption and width velocities using a new method described here and find that SNe Ic-bl with GRBs, on average, have quantifiably higher absorption velocities, as well as broader line widths than SNe without observed GRBs. In addition, we search for correlations between SN-GRB spectral properties and the energies of their accompanying GRBs. Finally, we show that the absence of clear He lines in optical spectra of SNe Ic-bl, and in particular of SN-GRBs, is not due to them being too smeared out due to the high velocities present in the ejecta. This implies that the progenitor stars of SN-GRBs are probably He-free, in addition to being H-free, which puts strong constraints on the stellar evolutionary paths needed to produce such SN-GRB progenitors at the observed low metallicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا