ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulse-level noisy quantum circuits with QuTiP

101   0   0.0 ( 0 )
 نشر من قبل Boxi Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy Intermediate-Scale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiPs quantum information processing package. These tools simulate quantum circuits at the pulse level, fully leveraging QuTiPs quantum dynamics solvers and control optimization features. We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian that describes the unitary evolution of the physical qubits. Various types of noise can be introduced based on the physical model, e.g., by simulating the Lindblad density-matrix dynamics or Monte Carlo quantum trajectories. In particular, we allow for the definition of environment-induced decoherence at the processor level and include noise simulation at the level of control pulses. As an example, we consider the compilation of the Deutsch-Jozsa algorithm on a superconducting-qubit-based and a spin-chain-based processor, also using control optimization algorithms. We also reproduce experimental results on cross-talk noise in an ion-based processor, and show how a Ramsey experiment can be modeled with Lindblad dynamics. Finally, we show how to integrate these features with other software frameworks.



قيم البحث

اقرأ أيضاً

Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. I n this work, we simulate random quantum circuits in 1D with Matrix Product Density Operators (MPDO), for different noise models such as dephasing, depolarizing, and amplitude damping. We show that the method based on Matrix Product States (MPS) fails to approximate the noisy output quantum states for any of the noise models considered, while the MPDO method approximates them well. Compared with the method of Matrix Product Operators (MPO), the MPDO method reflects a clear physical picture of noise (with inner indices taking care of the noise simulation) and quantum entanglement (with bond indices taking care of two-qubit gate simulation). Consequently, in case of weak system noise, the resource cost of MPDO will be significantly less than that of the MPO due to a relatively small inner dimension needed for the simulation. In case of strong system noise, a relatively small bond dimension may be sufficient to simulate the noisy circuits, indicating a regime that the noise is large enough for an `easy classical simulation. Moreover, we propose a more effective tensor updates scheme with optimal truncations for both the inner and the bond dimensions, performed after each layer of the circuit, which enjoys a canonical form of the MPDO for improving simulation accuracy. With truncated inner dimension to a maximum value $kappa$ and bond dimension to a maximum value $chi$, the cost of our simulation scales as $sim NDkappa^3chi^3$, for an $N$-qubit circuit with depth $D$.
We study the fundamental design automation problem of equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum) computing realm where quantum noise is present inevitably. The notion of approximate equivalence of (possibly noisy) quantum cir cuits is defined based on the Jamiolkowski fidelity which measures the average distance between output states of two super-operators when the input is chosen at random. By employing tensor network contraction, we present two algorithms, aiming at different situations where the number of noises varies, for computing the fidelity between an ideal quantum circuit and its noisy implementation. The effectiveness of our algorithms is demonstrated by experimenting on benchmarks of real NISQ circuits. When compared with the state-of-the-art implementation incorporated in Qiskit, experimental results show that the proposed algorithms outperform in both efficiency and scalability.
In this work, we present an efficient rank-compression approach for the classical simulation of Kraus decoherence channels in noisy quantum circuits. The approximation is achieved through iterative compression of the density matrix based on its leadi ng eigenbasis during each simulation step without the need to store, manipulate, or diagonalize the full matrix. We implement this algorithm in an in-house simulator, and show that the low rank algorithm speeds up simulations by more than two orders of magnitude over an existing implementation of full rank simulator, and with negligible error in the target noise and final observables. Finally, we demonstrate the utility of the low rank method as applied to representative problems of interest by using the algorithm to speed-up noisy simulations of Grovers search algorithm and quantum chemistry solvers.
Noise in existing quantum processors only enables an approximation to ideal quantum computation. However, these approximations can be vastly improved by error mitigation, for the computation of expectation values, as shown by small-scale experimental demonstrations. However, the practical scaling of these methods to larger system sizes remains unknown. Here, we demonstrate the utility of zero-noise extrapolation for relevant quantum circuits using up to 26 qubits, circuit depths of 60, and 1080 CNOT gates. We study the scaling of the method for canonical examples of product states and entangling Clifford circuits of increasing size, and extend it to the quench dynamics of 2-D Ising spin lattices with varying couplings. We show that the efficacy of the error mitigation is greatly enhanced by additional error suppression techniques and native gate decomposition that reduce the circuit time. By combining these methods, we demonstrate an accuracy in the approximate quantum simulation of the quench dynamics that surpasses the classical approximations obtained from a state-of-the-art 2-D tensor network method. These results reveal a path to a relevant quantum advantage with noisy, digital, quantum processors.
Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Giv en the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا