ﻻ يوجد ملخص باللغة العربية
The study of the impact of noise on quantum circuits is especially relevant to guide the progress of Noisy Intermediate-Scale Quantum (NISQ) computing. In this paper, we address the pulse-level simulation of noisy quantum circuits with the Quantum Toolbox in Python (QuTiP). We introduce new tools in qutip-qip, QuTiPs quantum information processing package. These tools simulate quantum circuits at the pulse level, fully leveraging QuTiPs quantum dynamics solvers and control optimization features. We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian that describes the unitary evolution of the physical qubits. Various types of noise can be introduced based on the physical model, e.g., by simulating the Lindblad density-matrix dynamics or Monte Carlo quantum trajectories. In particular, we allow for the definition of environment-induced decoherence at the processor level and include noise simulation at the level of control pulses. As an example, we consider the compilation of the Deutsch-Jozsa algorithm on a superconducting-qubit-based and a spin-chain-based processor, also using control optimization algorithms. We also reproduce experimental results on cross-talk noise in an ion-based processor, and show how a Ramsey experiment can be modeled with Lindblad dynamics. Finally, we show how to integrate these features with other software frameworks.
Simulating quantum circuits with classical computers requires resources growing exponentially in terms of system size. Real quantum computer with noise, however, may be simulated polynomially with various methods considering different noise models. I
We study the fundamental design automation problem of equivalence checking in the NISQ (Noisy Intermediate-Scale Quantum) computing realm where quantum noise is present inevitably. The notion of approximate equivalence of (possibly noisy) quantum cir
In this work, we present an efficient rank-compression approach for the classical simulation of Kraus decoherence channels in noisy quantum circuits. The approximation is achieved through iterative compression of the density matrix based on its leadi
Noise in existing quantum processors only enables an approximation to ideal quantum computation. However, these approximations can be vastly improved by error mitigation, for the computation of expectation values, as shown by small-scale experimental
Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Giv