ﻻ يوجد ملخص باللغة العربية
The globalization of the electronics supply chain is requiring effective methods to thwart reverse engineering and IP theft. Logic locking is a promising solution but there are still several open concerns. Even when applied at high level of abstraction, logic locking leads to large overhead without guaranteeing that the obfuscation metric is actually maximized. We propose a framework to optimize the use of behavioral logic locking for a given security metric. We explore how to apply behavioral logic locking techniques during the HLS of IP cores. Operating on the chip behavior, our method is compatible with commercial HLS tools, complementing existing industrial design flows. We offer a framework where the designer can implement different meta-heuristics to explore the design space and select where to apply logic locking. Our method optimizes a given security metric better than complete obfuscation, allows us to 1) obtain better protection, 2) reduce the obfuscation cost.
In this work, we present a new approach to high level synthesis (HLS), where high level functions are first mapped to an architectural template, before hardware synthesis is performed. As FPGA platforms are especially suitable for implementing stream
High-Level Synthesis (HLS) frameworks allow to easily specify a large number of variants of the same hardware design by only acting on optimization directives. Nonetheless, the hardware synthesis of implementations for all possible combinations of di
For a system-level design of Networks-on-Chip for 3D heterogeneous System-on-Chip (SoC), the locations of components, routers and vertical links are determined from an application model and technology parameters. In conventional methods, the two inpu
Hardware accelerators are key to the efficiency and performance of system-on-chip (SoC) architectures. With high-level synthesis (HLS), designers can easily obtain several performance-cost trade-off implementations for each component of a complex har
Triple Modular Redundancy (TMR) is a suitable fault tolerant technique for SRAM-based FPGA. However, one of the main challenges in achieving 100% robustness in designs protected by TMR running on programmable platforms is to prevent upsets in the rou