ﻻ يوجد ملخص باللغة العربية
We extend the Altmann-Hausen presentation of normal affine algebraic C-varieties endowed with effective torus actions to the real setting. In particular, we focus on actions of quasi-split real tori, in which case we obtain a simpler presentation.
Using the work of Guillen and Navarro Aznar we associate to each real algebraic variety a filtered chain complex, the weight complex, which is well-defined up to filtered quasi-isomorphism, and which induces on Borel-Moore homology with Z/2 coefficie
We give some explicit bounds for the number of cobordism classes of real algebraic manifolds of real degree less than $d$, and for the size of the sum of $mod 2$ Betti numbers for the real form of complex manifolds of complex degree less than $d$.
We give an algebro-geometric classification of smooth real affine algebraic surfaces endowed with an effective action of the real algebraic circle group $mathbb{S}^1$ up to equivariant isomorphisms. As an application, we show that every compact diffe
In this article we review the question of constructing geometric quotients of actions of linear algebraic groups on irreducible varieties over algebraically closed fields of characteristic zero, in the spirit of Mumfords geometric invariant theory (G
Let $X$ be a smooth projective real algebraic variety. We give new positive and negative results on the problem of approximating a submanifold of the real locus of $X$ by real loci of subvarieties of $X$, as well as on the problem of determining the