ﻻ يوجد ملخص باللغة العربية
Despite the significant progress over the last 50 years in simulating flow problems using numerical discretization of the Navier-Stokes equations (NSE), we still cannot incorporate seamlessly noisy data into existing algorithms, mesh-generation is complex, and we cannot tackle high-dimensional problems governed by parametrized NSE. Moreover, solving inverse flow problems is often prohibitively expensive and requires complex and expensive formulations and new computer codes. Here, we review flow physics-informed learning, integrating seamlessly data and mathematical models, and implementing them using physics-informed neural networks (PINNs). We demonstrate the effectiveness of PINNs for inverse problems related to three-dimensional wake flows, supersonic flows, and biomedical flows.
Multifidelity simulation methodologies are often used in an attempt to judiciously combine low-fidelity and high-fidelity simulation results in an accuracy-increasing, cost-saving way. Candidates for this approach are simulation methodologies for whi
We propose a Bayesian physics-informed neural network (B-PINN) to solve both forward and inverse nonlinear problems described by partial differential equations (PDEs) and noisy data. In this Bayesian framework, the Bayesian neural network (BNN) combi
There have been several efforts to Physics-informed neural networks (PINNs) in the solution of the incompressible Navier-Stokes fluid. The loss function in PINNs is a weighted sum of multiple terms, including the mismatch in the observed velocity and
Near-wall blood flow and wall shear stress (WSS) regulate major forms of cardiovascular disease, yet they are challenging to quantify with high fidelity. Patient-specific computational and experimental measurement of WSS suffers from uncertainty, low
We propose a discretization-free approach based on the physics-informed neural network (PINN) method for solving coupled advection-dispersion and Darcy flow equations with space-dependent hydraulic conductivity. In this approach, the hydraulic conduc