ﻻ يوجد ملخص باللغة العربية
Mobile system-on-chips (SoCs) are growing in their complexity and heterogeneity (e.g., Arms Big-Little architecture) to meet the needs of emerging applications, including games and artificial intelligence. This makes it very challenging to optimally manage the resources (e.g., controlling the number and frequency of different types of cores) at runtime to meet the desired trade-offs among multiple objectives such as performance and energy. This paper proposes a novel information-theoretic framework referred to as PaRMIS to create Pareto-optimal resource management policies for given target applications and design objectives. PaRMIS specifies parametric policies to manage resources and learns statistical models from candidate policy evaluation data in the form of target design objective values. The key idea is to select a candidate policy for evaluation in each iteration guided by statistical models that maximize the information gain about the true Pareto front. Experiments on a commercial heterogeneous SoC show that PaRMIS achieves better Pareto fronts and is easily usable to optimize complex objectives (e.g., performance per Watt) when compared to prior methods.
Dynamic resource management has become one of the major areas of research in modern computer and communication system design due to lower power consumption and higher performance demands. The number of integrated cores, level of heterogeneity and amo
One of the most critical aspects of integrating loosely-coupled accelerators in heterogeneous SoC architectures is orchestrating their interactions with the memory hierarchy, especially in terms of navigating the various cache-coherence options: from
Blockchain-enabled Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO) while keeping data on the mobile devices. Then, the model updates are stored in the bl
Learning cooperative policies for multi-agent systems is often challenged by partial observability and a lack of coordination. In some settings, the structure of a problem allows a distributed solution with limited communication. Here, we consider a
Smart meters (SMs) share fine-grained electricity consumption of households with utility providers almost in real-time. This can violate the users privacy since sensitive information is leaked through the SMs data. In this study, a novel privacy-awar