ﻻ يوجد ملخص باللغة العربية
The clique removal lemma says that for every $r geq 3$ and $varepsilon>0$, there exists some $delta>0$ so that every $n$-vertex graph $G$ with fewer than $delta n^r$ copies of $K_r$ can be made $K_r$-free by removing at most $varepsilon n^2$ edges. The dependence of $delta$ on $varepsilon$ in this result is notoriously difficult to determine: it is known that $delta^{-1}$ must be at least super-polynomial in $varepsilon^{-1}$, and that it is at most of tower type in $log varepsilon^{-1}$. We prove that if one imposes an appropriate minimum degree condition on $G$, then one can actually take $delta$ to be a linear function of $varepsilon$ in the clique removal lemma. Moreover, we determine the threshold for such a minimum degree requirement, showing that above this threshold we have linear bounds, whereas below the threshold the bounds are once again super-polynomial, as in the unrestricted removal lemma. We also investigate this question for other graphs besides cliques, and prove some general results about how minimum degree conditions affect the bounds in the graph removal lemma.
ErdH{o}s determined the maximum size of a nonhamiltonian graph of order $n$ and minimum degree at least $k$ in 1962. Recently, Ning and Peng generalized. ErdH{o}s work and gave the maximum size $h(n,c,k)$ of graphs with prescribed order $n$, circumfe
Given a simple graph $G$, denote by $Delta(G)$, $delta(G)$, and $chi(G)$ the maximum degree, the minimum degree, and the chromatic index of $G$, respectively. We say $G$ is emph{$Delta$-critical} if $chi(G)=Delta(G)+1$ and $chi(H)le Delta(G)$ for eve
The degree-based entropy of a graph is defined as the Shannon entropy based on the information functional that associates the vertices of the graph with the corresponding degrees. In this paper, we study extremal problems of finding the graphs attain
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ i
We prove that $s_r(K_k) = O(k^5 r^{5/2})$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, ErdH{o}s and Lov{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ cont