Evacuation Problem Under the Nuclear Leakage Accident


الملخص بالإنكليزية

To handle the detrimental effects brought by leakage of radioactive gases at nuclear power station, we propose a bus based evacuation optimization problem. The proposed model incorporates the following four constraints, 1) the maximum dose of radiation per evacuee, 2) the limitation of bus capacity, 3) the number of evacuees at demand node (bus pickup stop), 4) evacuees balance at demand and shelter nodes, which is formulated as a mixed integer nonlinear programming (MINLP) problem. Then, to eliminate the difficulties of choosing a proper M value in Big-M method, a Big-M free method is employed to linearize the nonlinear terms of the MINLP problem. Finally, the resultant mixed integer linear program (MILP) problem is solvable with efficient commercial solvers such as CPLEX or Gurobi, which guarantees the optimal evacuation plan obtained. To evaluate the effectiveness of proposed evacuation model, we test our model on two different scenarios (a random one and a practical scenario). For both scenarios, our model attains executable evacuation plan within given 3600 seconds computation time.

تحميل البحث