ترغب بنشر مسار تعليمي؟ اضغط هنا

The CKM Phase and $bartheta$ in Nelson-Barr Models

78   0   0.0 ( 0 )
 نشر من قبل Alessandro Valenti
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the Nelson-Barr approach to the Strong CP Problem. We derive the necessary conditions in order to simultaneously reproduce the CKM phase and the quark masses. Then we quantify the irreducible contributions to the QCD topological angle, namely the corrections arising from loops of the colored fermion mediators that characterize these models. Corrections analytic in the couplings first arise at 3-loop order and are safely below current bounds; non-analytic effects are 2-loop order and decouple as the mediators exceed a few TeV. We discuss collider, electroweak, and flavor bounds and argue that most of the parameter space above the TeV scale is still allowed in models with down-type mediators, whereas other scenarios are more severely constrained. With two or more families of mediators the dominant experimental bound is due to the neutron electric dipole moment.



قيم البحث

اقرأ أيضاً

The Nelson-Barr (NB) mechanism to solve the strong CP problem assumes CP conservation, arranges vanishing $bar{theta}$ at tree-level and requires vector-like quarks (VLQs) to transmit the CP breaking to the SM. We analyze the flavor constraints comin g from the presence of one such down type VLQ of NB type by performing a global fit on the relevant flavor observables. A comparison is made to the case of one generic VLQ. We find that the allowed parameter space for the VLQ Yukawa couplings and the mixing to the SM are confined to a region much smaller than in the generic case, making the NB case falsifiable in principle.
We present a supersymmetric solution to the strong CP problem based on spontaneous CP violation which simultaneously addresses the affects coming from supersymmetry breaking. The generated CP violating phase is communicated to the quark sector by int eracting with a heavy quark a la Nelson-Barr. The Majorana mass of the right handed neutrinos is generated by interactions with the CP violating sector and so does not conserve CP. This gives the neutrino sector a non-trivial CP violating phase which can then generate the baryon asymmetry of the universe through leptogeneis. The problematic phase in the supersymmetry breaking parameters are suppressed by appealing to a particular gauge mediation model which naturally suppresses the phases of the tree-level gluino mass. This suppression plus the fact that in gauge mediation all loop generated flavor and CP violation is of the minimal flavor violation variety allows for a complete and consistent solution to the strong CP problem.
We propose that the CP violating phase in the CKM mixing matrix is identical to the CP phases responsible for the spontaneous CP violation in the Higgs potential. A specific multi-Higgs model with Peccei-Quinn (PQ) symmetry is constructed to realize this idea. The CP violating phase does not vanish when all Higgs masses become large. There are flavor changing neutral current (FCNC) interactions mediated by neutral Higgs bosons at the tree level. However, unlike general multi-Higgs models, the FCNC Yukawa couplings are fixed in terms of the quark masses and CKM mixing angles. Implications for meson-anti-meson mixing, including recent data on $D-bar D$ mixing, and neutron electric dipole moment (EDM) are studied. We find that the neutral Higgs boson masses can be at the order of one hundred GeV. The neutron EDM can be close to the present experimental upper bound.
We investigate the impact of extra leptons on observed tensions in the muon $g-2$ and the first-row CKM unitarity. By introducing a new SU(2)$_L$ doublet lepton and a SU(2)$_L$ triplet lepton, we find that both of the tensions can be explained simult aneously under constraints from electroweak precision observables and Higgs-boson decays. Our model could be tested by measurements of $htomumu$ at future collider experiments.
This report contains the results of the Workshop on the CKM Unitarity Triangle, held at CERN on 13-16 February 2002 to study the determination of the CKM matrix from the available data of K, D, and B physics. This is a coherent document with chapters covering the determination of CKM elements from tree level decays and K and B meson mixing and the global fits of the unitarity triangle parameters. The impact of future measurements is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا