Comment on the paper J. Solsvik and E. Manger, Kinetic theory models for granular mixtures with unequal granular temperature: Hydrodynamic velocity, Phys. Fluids textbf{33}, 043321 (2021).
We investigate the dynamics of a driven system of dissipative hard spheres in the framework of mode-coupling theory. The dissipation is modeled by normal restitution, and driving is applied to individual particles in the bulk. In such a system, a gla
ss transition is predicted for a finite transition density. For increasing inelasticity, the transition shifts to higher densities. Despite the strong driving at high dissipation, the transition persists up to the limit of totally inelastic normal restitution.
We evaluate in this work the hydrodynamic transport coefficients of a granular binary mixture in $d$ dimensions. In order to eliminate the observed disagreement (for strong dissipation) between computer simulations and previously calculated theoretic
al transport coefficients for a monocomponent gas, we obtain explicit expressions of the seven Navier-Stokes transport coefficients with the use of a new Sonine approach in the Chapman-Enskog theory. Our new approach consists in replacing, where appropriate in the Chapman-Enskog procedure, the Maxwell-Boltzmann distribution weight function (used in the standard first Sonine approximation) by the homogeneous cooling state distribution for each species. The rationale for doing this lies in the fact that, as it is well known, the non-Maxwellian contributions to the distribution function of the granular mixture become more important in the range of strong dissipation we are interested in. The form of the transport coefficients is quite common in both standard and modified Sonine approximations, the distinction appearing in the explicit form of the different collision frequencies associated with the transport coefficients. Additionally, we numerically solve by means of the direct simulation Monte Carlo method the inelastic Boltzmann equation to get the diffusion and the shear viscosity coefficients for two and three dimensions. As in the case of a monocomponent gas, the modified Sonine approximation improves the estimates of the standard one, showing again the reliability of this method at strong values of dissipation.
Many features of granular media can be modelled as a fluid of hard spheres with {em inelastic} collisions. Under rapid flow conditions, the macroscopic behavior of grains can be described through hydrodynamic equations. At low-density, a fundamental
basis for the derivation of the hydrodynamic equations and explicit expressions for the transport coefficients appearing in them is provided by the Boltzmann kinetic theory conveniently modified to account for inelastic binary collisions. The goal of this chapter is to give an overview of the recent advances made for binary granular gases by using kinetic theory tools. Some of the results presented here cover aspects such as transport properties, energy nonequipartition, instabilities, segregation or mixing, non-Newtonian behavior, .... In addition, comparison of the analytical results with those obtained from Monte Carlo and molecular dynamics simulations is also carried out, showing the reliability of kinetic theory to describe granular flows even for strong dissipation.
We study a general model of granular Brownian ratchet consisting of an asymmetric object moving on a line and surrounded by a two-dimensional granular gas, which in turn is coupled to an external random driving force. We discuss the two resulting Bol
tzmann equations describing the gas and the object in the dilute limit and obtain a closed system for the first few moments of the system velocity distributions. Predictions for the net ratchet drift, the variance of its velocity fluctuations and the transition rates in the Markovian limit, are compared to numerical simulations and a fair agreement is observed.
We study velocity statistics of electrostatically driven granular gases. For two different experiments: (i) non-magnetic particles in a viscous fluid and (ii) magnetic particles in air, the velocity distribution is non-Maxwellian, and its high-energy
tail is exponential, P(v) ~ exp(-|v|). This behavior is consistent with kinetic theory of driven dissipative particles. For particles immersed in a fluid, viscous damping is responsible for the exponential tail, while for magnetic particles, long-range interactions cause the exponential tail. We conclude that velocity statistics of dissipative gases are sensitive to the fluid environment and to the form of the particle interaction.