ﻻ يوجد ملخص باللغة العربية
The detection of gravitational waves from a neutron star merger, GW170817, marked the dawn of a new era in time-domain astronomy. Monitoring of the radio emission produced by the merger, including high-resolution radio imaging, enabled measurements of merger properties including the energetics and inclination angle. In this work we compare the capabilities of current and future gravitational wave facilities to the sensitivity of radio facilities to quantify the prospects for detecting the radio afterglows of gravitational wave events. We consider three observing strategies to identify future mergers -- widefield follow-up, targeting galaxies within the merger localisation and deep monitoring of known counterparts. We find that while planned radio facilities like the Square Kilometre Array will be capable of detecting mergers at gigaparsec distances, no facilities are sufficiently sensitive to detect mergers at the range of proposed third-generation gravitational wave detectors that would operate starting in the 2030s.
Electromagnetic (EM) follow-up of gravitational wave (GW) candidates is important for verifying their astrophysical nature and studying their physical properties. While the next generation of GW detectors will have improved sensitivities to make the
Recently, there have been reports of six bright, dispersed bursts of coherent radio emission found in pulsar surveys with the Parkes Multi-beam Receiver. Not much is known about the progenitors of these bursts, but they are highly-energetic, and prob
Intergalactic space is believed to contain non-zero magnetic fields (the Intergalactic Magnetic Field: IGMF) which at scales of Mpc would have intensities below $10^{-9}$ G. Very high energy (VHE $>$100 GeV) gamma rays coming from blazars can produce
Gravitational waves have only two polarization modes in General Relativity. However, there are six possible modes of polarization in metric theory of gravity in general. The tests of gravitational waves polarization can be tools for pursuing the natu
In this lecture, after a synthetic review of measurements of CMB temperature anisotropies and of their cosmological implications, the theoretical background of CMB polarization is summarized and the concepts of the main experiments that are ongoing or are being planned are briefly described.