ﻻ يوجد ملخص باللغة العربية
Quark-antiquark pair (or dijet) production at the electron-ion collider (EIC) has been argued to be one of most important processes that allowing to access the Weizsacker-Williams (WW) gluon distributions at small $x$ limit. Within the framework of Color Glass Condensate (CGC) effective field theory (EFT), we calculated the dijet cross sections and the azimuthal correlations by including the Sudakov resummations, numerical results shown that the back-to-back correlations are significantly suppressed when the Sudakov resummations are taken into account. In addition, by using the solutions of running-coupling Balitsky-Kovchegov (rcBK) equation, the unpolarized and linearly polarized WW gluon distributions both in coordinate and momentum space are presented.
We present a first, detailed study of diffractive dijet photoproduction at the recently approved electron-ion collider (EIC) at BNL. Apart from establishing the kinematic reaches for various beam types, energies and kinematic cuts, we make precise pr
The production of a hard dijet with small transverse momentum imbalance in semi-inclusive DIS probes the conventional and linearly polarized Weizsu007faecker-Williams (WW) Transverse Momentum Dependent (TMD) gluon distributions. The latter, in partic
We propose a novel way of studying the gluon number density (the so-called Weizsacker-Williams gluon distribution) using the planned Electron Ion Collider. Namely, with the help of the azimuthal correlations between the total transverse momentum of t
We discuss the prospects of diffractive dijet photoproduction at the EIC to distinguish different fits of diffractive proton PDFs, different schemes of factorization breaking, to determine diffractive nuclear PDFs and pion PDFs from leading neutron production.
We study inclusive dijet azimuthal decorrelations in proton-proton collisions at the CERN LHC invoking the hypothesis of parton Reggeization in t-channel exchanges at high energies. In the parton Reggeization approach, the main contribution to the az