ﻻ يوجد ملخص باللغة العربية
We report experiments conducted in the field in the presence of fog, that were aimed at imaging under poor visibility. By means of intensity modulation at the source and two-dimensional quadrature lock-in detection by software at the receiver, a significant enhancement of the contrast-to-noise ratio was achieved in the imaging of beacons over hectometric distances. Further by illuminating the field of view with a modulated source, the technique helped reveal objects that were earlier obscured due to multiple scattering of light. This method, thus, holds promise of aiding in various forms of navigation under poor visibility due to fog.
In Polarization Discrimination Imaging, the amplitude of a sinusoid from a rotating analyzer, representing residual polarized light and carrying information on the object, is detected with the help of a lock-in amplifier. When turbidity increases bey
Multi-shot echo planar imaging (msEPI) is a promising approach to achieve high in-plane resolution with high sampling efficiency and low T2* blurring. However, due to the geometric distortion, shot-to-shot phase variations and potential subject motio
Hyperspectral image (HSI) contains both spatial pattern and spectral information which has been widely used in food safety, remote sensing, and medical detection. However, the acquisition of hyperspectral images is usually costly due to the complicat
The fusion of multimodal sensor streams, such as camera, lidar, and radar measurements, plays a critical role in object detection for autonomous vehicles, which base their decision making on these inputs. While existing methods exploit redundant info
Ghost imaging (GI) is a novel imaging technique based on the second-order correlation of light fields. Due to limited number of samplings in practice, traditional GI methods often reconstruct objects with unsatisfactory quality. To improve the imagin