ﻻ يوجد ملخص باللغة العربية
Continual or lifelong learning has been a long-standing challenge in machine learning to date, especially in natural language processing (NLP). Although state-of-the-art language models such as BERT have ushered in a new era in this field due to their outstanding performance in multitask learning scenarios, they suffer from forgetting when being exposed to a continuous stream of data with shifting data distributions. In this paper, we introduce DRILL, a novel continual learning architecture for open-domain text classification. DRILL leverages a biologically inspired self-organizing neural architecture to selectively gate latent language representations from BERT in a task-incremental manner. We demonstrate in our experiments that DRILL outperforms current methods in a realistic scenario of imbalanced, non-stationary data without prior knowledge about task boundaries. To the best of our knowledge, DRILL is the first of its kind to use a self-organizing neural architecture for open-domain lifelong learning in NLP.
Language models are at the heart of numerous works, notably in the text mining and information retrieval communities. These statistical models aim at extracting word distributions, from simple unigram models to recurrent approaches with latent variab
We present a novel method for generating, predicting, and using Spatiotemporal Occupancy Grid Maps (SOGM), which embed future information of dynamic scenes. Our automated generation process creates groundtruth SOGMs from previous navigation data. We
The ability to continuously expand knowledge over time and utilize it to rapidly generalize to new tasks is a key feature of human linguistic intelligence. Existing models that pursue rapid generalization to new tasks (e.g., few-shot learning methods
Although the self-supervised pre-training of transformer models has resulted in the revolutionizing of natural language processing (NLP) applications and the achievement of state-of-the-art results with regard to various benchmarks, this process is s
3D scene representation for robot manipulation should capture three key object properties: permanency -- objects that become occluded over time continue to exist; amodal completeness -- objects have 3D occupancy, even if only partial observations are