ﻻ يوجد ملخص باللغة العربية
In many real-world scenarios, a team of agents coordinate with each other to compete against an opponent. The challenge of solving this type of game is that the teams joint action space grows exponentially with the number of agents, which results in the inefficiency of the existing algorithms, e.g., Counterfactual Regret Minimization (CFR). To address this problem, we propose a new framework of CFR: CFR-MIX. Firstly, we propose a new strategy representation that represents a joint action strategy using individual strategies of all agents and a consistency relationship to maintain the cooperation between agents. To compute the equilibrium with individual strategies under the CFR framework, we transform the consistency relationship between strategies to the consistency relationship between the cumulative regret values. Furthermore, we propose a novel decomposition method over cumulative regret values to guarantee the consistency relationship between the cumulative regret values. Finally, we introduce our new algorithm CFR-MIX which employs a mixing layer to estimate cumulative regret values of joint actions as a non-linear combination of cumulative regret values of individual actions. Experimental results show that CFR-MIX outperforms existing algorithms on various games significantly.
Counterfactual regret minimization (CFR) is the most popular algorithm on solving two-player zero-sum extensive games with imperfect information and achieves state-of-the-art performance in practice. However, the performance of CFR is not fully under
Counterfactual Regret Minimization (CFR) is an efficient no-regret learning algorithm for decision problems modeled as extensive games. CFRs regret bounds depend on the requirement of perfect recall: players always remember information that was revea
Securing networked infrastructures is important in the real world. The problem of deploying security resources to protect against an attacker in networked domains can be modeled as Network Security Games (NSGs). Unfortunately, existing approaches, in
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define
Extensive-form games constitute the standard representation scheme for games with a temporal component. But do all extensive-form games correspond to protocols that we can implement in the real world? We often rule out games with imperfect recall, wh