ترغب بنشر مسار تعليمي؟ اضغط هنا

Label Inference Attacks from Log-loss Scores

144   0   0.0 ( 0 )
 نشر من قبل Abhinav Aggarwal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Log-loss (also known as cross-entropy loss) metric is ubiquitously used across machine learning applications to assess the performance of classification algorithms. In this paper, we investigate the problem of inferring the labels of a dataset from single (or multiple) log-loss score(s), without any other access to the dataset. Surprisingly, we show that for any finite number of label classes, it is possible to accurately infer the labels of the dataset from the reported log-loss score of a single carefully constructed prediction vector if we allow arbitrary precision arithmetic. Additionally, we present label inference algorithms (attacks) that succeed even under addition of noise to the log-loss scores and under limited precision arithmetic. All our algorithms rely on ideas from number theory and combinatorics and require no model training. We run experimental simulations on some real datasets to demonstrate the ease of running these attacks in practice.



قيم البحث

اقرأ أيضاً

Membership Inference Attacks exploit the vulnerabilities of exposing models trained on customer data to queries by an adversary. In a recently proposed implementation of an auditing tool for measuring privacy leakage from sensitive datasets, more ref ined aggregates like the Log-Loss scores are exposed for simulating inference attacks as well as to assess the total privacy leakage based on the adversarys predictions. In this paper, we prove that this additional information enables the adversary to infer the membership of any number of datapoints with full accuracy in a single query, causing complete membership privacy breach. Our approach obviates any attack model training or access to side knowledge with the adversary. Moreover, our algorithms are agnostic to the model under attack and hence, enable perfect membership inference even for models that do not memorize or overfit. In particular, our observations provide insight into the extent of information leakage from statistical aggregates and how they can be exploited.
Machine learning classifiers rely on loss functions for performance evaluation, often on a private (hidden) dataset. Label inference was recently introduced as the problem of reconstructing the ground truth labels of this private dataset from just th e (possibly perturbed) loss function values evaluated at chosen prediction vectors, without any other access to the hidden dataset. Existing results have demonstrated this inference is possible on specific loss functions like the cross-entropy loss. In this paper, we introduce the notion of codomain separability to formally study the necessary and sufficient conditions under which label inference is possible from any (noisy) loss function values. Using this notion, we show that for many commonly used loss functions, including multiclass cross-entropy with common activation functions and some Bregman divergence-based losses, it is possible to design label inference attacks for arbitrary noise levels. We demonstrate that these attacks can also be carried out through actual neural network models, and argue, both formally and empirically, the role of finite precision arithmetic in this setting.
78 - Jihun Hamm 2016
Preserving privacy of continuous and/or high-dimensional data such as images, videos and audios, can be challenging with syntactic anonymization methods which are designed for discrete attributes. Differential privacy, which provides a more formal de finition of privacy, has shown more success in sanitizing continuous data. However, both syntactic and differential privacy are susceptible to inference attacks, i.e., an adversary can accurately infer sensitive attributes from sanitized data. The paper proposes a novel filter-based mechanism which preserves privacy of continuous and high-dimensional attributes against inference attacks. Finding the optimal utility-privacy tradeoff is formulated as a min-diff-max optimization problem. The paper provides an ERM-like analysis of the generalization error and also a practical algorithm to perform the optimization. In addition, the paper proposes an extension that combines minimax filter and differentially-private noisy mechanism. Advantages of the method over purely noisy mechanisms is explained and demonstrated with examples. Experiments with several real-world tasks including facial expression classification, speech emotion classification, and activity classification from motion, show that the minimax filter can simultaneously achieve similar or better target task accuracy and lower inference accuracy, often significantly lower than previous methods.
Generative Adversarial Networks (GANs) have made releasing of synthetic images a viable approach to share data without releasing the original dataset. It has been shown that such synthetic data can be used for a variety of downstream tasks such as tr aining classifiers that would otherwise require the original dataset to be shared. However, recent work has shown that the GAN models and their synthetically generated data can be used to infer the training set membership by an adversary who has access to the entire dataset and some auxiliary information. Current approaches to mitigate this problem (such as DPGAN) lead to dramatically poorer generated sample quality than the original non--private GANs. Here we develop a new GAN architecture (privGAN), where the generator is trained not only to cheat the discriminator but also to defend membership inference attacks. The new mechanism provides protection against this mode of attack while leading to negligible loss in downstream performances. In addition, our algorithm has been shown to explicitly prevent overfitting to the training set, which explains why our protection is so effective. The main contributions of this paper are: i) we propose a novel GAN architecture that can generate synthetic data in a privacy preserving manner without additional hyperparameter tuning and architecture selection, ii) we provide a theoretical understanding of the optimal solution of the privGAN loss function, iii) we demonstrate the effectiveness of our model against several white and black--box attacks on several benchmark datasets, iv) we demonstrate on three common benchmark datasets that synthetic images generated by privGAN lead to negligible loss in downstream performance when compared against non--private GANs.
We consider the problem of approximate Bayesian inference in log-supermodular models. These models encompass regular pairwise MRFs with binary variables, but allow to capture high-order interactions, which are intractable for existing approximate inf erence techniques such as belief propagation, mean field, and variants. We show that a recently proposed variational approach to inference in log-supermodular models -L-FIELD- reduces to the widely-studied minimum norm problem for submodular minimization. This insight allows to leverage powerful existing tools, and hence to solve the variational problem orders of magnitude more efficiently than previously possible. We then provide another natural interpretation of L-FIELD, demonstrating that it exactly minimizes a specific type of Renyi divergence measure. This insight sheds light on the nature of the variational approximations produced by L-FIELD. Furthermore, we show how to perform parallel inference as message passing in a suitable factor graph at a linear convergence rate, without having to sum up over all the configurations of the factor. Finally, we apply our approach to a challenging image segmentation task. Our experiments confirm scalability of our approach, high quality of the marginals, and the benefit of incorporating higher-order potentials.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا