ﻻ يوجد ملخص باللغة العربية
We apply reinforcement learning to video compressive sensing to adapt the compression ratio. Specifically, video snapshot compressive imaging (SCI), which captures high-speed video using a low-speed camera is considered in this work, in which multiple (B) video frames can be reconstructed from a snapshot measurement. One research gap in previous studies is how to adapt B in the video SCI system for different scenes. In this paper, we fill this gap utilizing reinforcement learning (RL). An RL model, as well as various convolutional neural networks for reconstruction, are learned to achieve adaptive sensing of video SCI systems. Furthermore, the performance of an object detection network using directly the video SCI measurements without reconstruction is also used to perform RL-based adaptive video compressive sensing. Our proposed adaptive SCI method can thus be implemented in low cost and real time. Our work takes the technology one step further towards real applications of video SCI.
To capture high-speed videos using a two-dimensional detector, video snapshot compressive imaging (SCI) is a promising system, where the video frames are coded by different masks and then compressed to a snapshot measurement. Following this, efficien
A simple and inexpensive (low-power and low-bandwidth) modification is made to a conventional off-the-shelf color video camera, from which we recover {multiple} color frames for each of the original measured frames, and each of the recovered frames c
In this paper, we aim to tackle the task of semi-supervised video object segmentation across a sequence of frames where only the ground-truth segmentation of the first frame is provided. The challenges lie in how to online update the segmentation mod
Multi-modal learning, which focuses on utilizing various modalities to improve the performance of a model, is widely used in video recognition. While traditional multi-modal learning offers excellent recognition results, its computational expense lim
Multilinear Compressive Learning (MCL) is an efficient signal acquisition and learning paradigm for multidimensional signals. The level of signal compression affects the detection or classification performance of a MCL model, with higher compression