ﻻ يوجد ملخص باللغة العربية
We present a comprehensive multi-frequency study of the HBL 1ES 1959+650 using data from various facilities during the period 2016-2017, including X-ray data from {it AstroSat} and {it Swift} during the historically high X-ray flux state of the source observed until February 2021. The unprecedented quality of X-ray data from high cadence monitoring with the {it AstroSat} during 2016-2017 enables us to establish a detailed description of X-ray flares in 1ES 1959+650. The synchrotron peak shifts significantly between different flux states, in a manner consistent with a geometric (changing Doppler factor) interpretation. A time-dependent leptonic diffusive-shock-acceleration and radiation transfer model is used to reproduce the spectral energy distributions (SEDs) and X-ray light curves, to provide insight into the particle acceleration during the major activity periods observed in 2016 and 2017. The extensive data of {it Swift}-XRT from December 2015 to February 2021 (Exp. = 411.3 ks) reveals a positive correlation between flux and peak position.
Aim : The nearby TeV blazar 1ES 1959+650 (z=0.047) was reported to be in flaring state during June - July 2016 by Fermi-LAT, FACT, MAGIC and VERITAS collaborations. We studied the spectral energy distributions (SEDs) in different states of the flare
We report on the VERITAS observations of the high-frequency peaked BL Lac object 1ES 1959+650 in the period 2007-2011. This source is detected at TeV energies by VERITAS at 16.4 standard deviation (sigma) significance in 7.6 hours of observation in a
The blazar 1ES 1959+650 was observed twice by BeppoSAX in September 2001 simultaneously with optical observations. We report here the X-ray data together with the optical, R_C magnitude, light curve since August 1995. The BeppoSAX observations were t
1ES 1959+650 is a bright TeV high-frequency-peaked BL Lac object exhibiting interesting features like orphan TeV flares and a broad emission in the high-energy regime, that are difficult to interpret using conventional one-zone Synchrotron Self-Compt
We summarize broadband observations of the TeV-emitting blazar 1ES 1959+650, including optical R-band observations by the robotic telescopes Super-LOTIS and iTelescope, UV observations by Swift UVOT, X-ray observations by the Swift X-ray Telescope (X