ترغب بنشر مسار تعليمي؟ اضغط هنا

Pairwise Interactions of Ring Dark Solitons with Vortices and other Rings: Stationary States, Stability Features and Nonlinear Dynamics

99   0   0.0 ( 0 )
 نشر من قبل Ricardo Carretero
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work, we explore analytically and numerically the co-existence and interactions of ring dark solitons (RDSs) with other RDSs, as well as with vortices. The azimuthal instabilities of the rings are explored via the so-called filament method. As a result of their nonlinear interaction, the vortices are found to play a stabilizing role on the rings, yet their effect is not sufficient to offer complete stabilization of RDSs. Nevertheless, complete stabilization of the relevant configuration can be achieved by the presence of external ring-shaped barrier potentials. Interactions of multiple rings are also explored, and their equilibrium positions (as a result of their own curvature and their tail-tail interactions) are identified. In this case too, stabilization is achieved via multi-ring external barrier potentials.



قيم البحث

اقرأ أيضاً

Quasiparticle approach to dynamics of dark solitons is applied to the case of ring solitons. It is shown that the energy conservation law provides the effective equations of motion of ring dark solitons for general form of the nonlinear term in the g eneralized nonlinear Schroedinger or Gross-Pitaevskii equation. Analytical theory is illustrated by examples of dynamics of ring solitons in light beams propagating through a photorefractive medium and in non-uniform condensates confined in axially symmetric traps. Analytical results agree very well with the results of our numerical simulations.
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schroedinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-latti ce-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the hexapole of alternating phases, as well as the vortex of topological charge S=2 have intervals of stability; among three-site states, only the vortex of topological charge S=1 may be stable in the case of focusing nonlinearity. These conclusions are confirmed both for hexagonal and for honeycomb lattices by means of detailed numerical bifurcation analysis of the stationary states from the anticontinuum limit, and by direct simulations to monitor the dynamical instabilities, when the latter arise. The dynamics reveal a wealth of nonlinear behavior resulting not only in single-site solitary wave forms, but also in robust multisite breathing structures.
We consider one- and two-dimensional (1D and 2D) optical or matter-wave media with a maximum of the local self-repulsion strength at the center, and a minimum at periphery. If the central area is broad enough, it supports ground states in the form of flat-floor textquotedblleft bubbles, and topological excitations, in the form of dark solitons in 1D and vortices with winding number $m$ in 2D. Unlike bright solitons, delocalized bubbles and dark modes were not previously considered in this setting. The ground and excited states are accurately approximated by the Thomas-Fermi expressions. The 1D and 2D bubbles, as well as vortices with $m=1$, are completely stable, while the dark solitons and vortices with $m=2$ have nontrivial stability boundaries in their existence areas. Unstable dark solitons are expelled to the periphery, while unstable double vortices split in rotating pairs of unitary ones. Displaced stable vortices precess around the central point.
We present the study of the dark soliton dynamics in an inhomogenous fiber by means of a variable coefficient modified nonlinear Schr{o}dinger equation (Vc-MNLSE) with distributed dispersion, self-phase modulation, self-steepening and linear gain/los s. The ultrashort dark soliton pulse evolution and interaction is studied by using the Hirota bilinear (HB) method. In particular, we give much insight into the effect of self-steepening (SS) on the dark soliton dynamics. The study reveals a shock wave formation, as a major effect of SS. Numerically, we study the dark soliton propagation in the continuous wave background, and the stability of the soliton solution is tested in the presence of photon noise. The elastic collision behaviors of the dark solitons are discussed by the asymptotic analysis. On the other hand, considering the nonlinear tunneling of dark soliton through barrier/well, we find that the tunneling of the dark soliton depends on the height of the barrier and the amplitude of the soliton. The intensity of the tunneling soliton either forms a peak or valley and retains its shape after the tunneling. For the case of exponential background, the soliton tends to compress after tunneling through the barrier/well.
We examine the spectral properties of single and multiple matter-wave dark solitons in Bose-Einstein condensates confined in parabolic traps, where the scattering length is periodically modulated. In addition to the large-density limit picture previo usly established for homogeneous nonlinearities, we explore a perturbative analysis in the vicinity of the linear limit, which provides good agreement with the observed spectral modes. Between these two analytically tractable limits, we use numerical computations to fill in the relevant intermediate regime. We find that the scattering length modulation can cause a variety of features absent for homogeneous nonlinearities. Among them, we note the potential oscillatory instability even of the single dark soliton, the potential absence of instabilities in the immediate vicinity of the linear limit for two dark solitons, and the existence of an exponential instability associated with the in-phase motion of three dark solitons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا