ترغب بنشر مسار تعليمي؟ اضغط هنا

Sample-Efficient Reinforcement Learning Is Feasible for Linearly Realizable MDPs with Limited Revisiting

149   0   0.0 ( 0 )
 نشر من قبل Yuting Wei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Low-complexity models such as linear function representation play a pivotal role in enabling sample-efficient reinforcement learning (RL). The current paper pertains to a scenario with value-based linear representation, which postulates the linear realizability of the optimal Q-function (also called the linear $Q^{star}$ problem). While linear realizability alone does not allow for sample-efficient solutions in general, the presence of a large sub-optimality gap is a potential game changer, depending on the sampling mechanism in use. Informally, sample efficiency is achievable with a large sub-optimality gap when a generative model is available but is unfortunately infeasible when we turn to standard online RL settings. In this paper, we make progress towards understanding this linear $Q^{star}$ problem by investigating a new sampling protocol, which draws samples in an online/exploratory fashion but allows one to backtrack and revisit previous states in a controlled and infrequent manner. This protocol is more flexible than the standard online RL setting, while being practically relevant and far more restrictive than the generative model. We develop an algorithm tailored to this setting, achieving a sample complexity that scales polynomially with the feature dimension, the horizon, and the inverse sub-optimality gap, but not the size of the state/action space. Our findings underscore the fundamental interplay between sampling protocols and low-complexity structural representation in RL.



قيم البحث

اقرأ أيضاً

The curse of dimensionality is a widely known issue in reinforcement learning (RL). In the tabular setting where the state space $mathcal{S}$ and the action space $mathcal{A}$ are both finite, to obtain a nearly optimal policy with sampling access to a generative model, the minimax optimal sample complexity scales linearly with $|mathcal{S}|times|mathcal{A}|$, which can be prohibitively large when $mathcal{S}$ or $mathcal{A}$ is large. This paper considers a Markov decision process (MDP) that admits a set of state-action features, which can linearly express (or approximate) its probability transition kernel. We show that a model-based approach (resp.$~$Q-learning) provably learns an $varepsilon$-optimal policy (resp.$~$Q-function) with high probability as soon as the sample size exceeds the order of $frac{K}{(1-gamma)^{3}varepsilon^{2}}$ (resp.$~$$frac{K}{(1-gamma)^{4}varepsilon^{2}}$), up to some logarithmic factor. Here $K$ is the feature dimension and $gammain(0,1)$ is the discount factor of the MDP. Both sample complexity bounds are provably tight, and our result for the model-based approach matches the minimax lower bound. Our results show that for arbitrarily large-scale MDP, both the model-based approach and Q-learning are sample-efficient when $K$ is relatively small, and hence the title of this paper.
A fundamental question in the theory of reinforcement learning is: suppose the optimal $Q$-function lies in the linear span of a given $d$ dimensional feature mapping, is sample-efficient reinforcement learning (RL) possible? The recent and remarkabl e result of Weisz et al. (2020) resolved this question in the negative, providing an exponential (in $d$) sample size lower bound, which holds even if the agent has access to a generative model of the environment. One may hope that this information theoretic barrier for RL can be circumvented by further supposing an even more favorable assumption: there exists a emph{constant suboptimality gap} between the optimal $Q$-value of the best action and that of the second-best action (for all states). The hope is that having a large suboptimality gap would permit easier identification of optimal actions themselves, thus making the problem tractable; indeed, provided the agent has access to a generative model, sample-efficient RL is in fact possible with the addition of this more favorable assumption. This work focuses on this question in the standard online reinforcement learning setting, where our main result resolves this question in the negative: our hardness result shows that an exponential sample complexity lower bound still holds even if a constant suboptimality gap is assumed in addition to having a linearly realizable optimal $Q$-function. Perhaps surprisingly, this implies an exponential separation between the online RL setting and the generative model setting. Complementing our negative hardness result, we give two positive results showing that provably sample-efficient RL is possible either under an additional low-variance assumption or under a novel hypercontractivity assumption (both implicitly place stronger conditions on the underlying dynamics model).
Modern tasks in reinforcement learning have large state and action spaces. To deal with them efficiently, one often uses predefined feature mapping to represent states and actions in a low-dimensional space. In this paper, we study reinforcement lear ning for discounted Markov Decision Processes (MDPs), where the transition kernel can be parameterized as a linear function of certain feature mapping. We propose a novel algorithm that makes use of the feature mapping and obtains a $tilde O(dsqrt{T}/(1-gamma)^2)$ regret, where $d$ is the dimension of the feature space, $T$ is the time horizon and $gamma$ is the discount factor of the MDP. To the best of our knowledge, this is the first polynomial regret bound without accessing the generative model or making strong assumptions such as ergodicity of the MDP. By constructing a special class of MDPs, we also show that for any algorithms, the regret is lower bounded by $Omega(dsqrt{T}/(1-gamma)^{1.5})$. Our upper and lower bound results together suggest that the proposed reinforcement learning algorithm is near-optimal up to a $(1-gamma)^{-0.5}$ factor.
Many cooperative multiagent reinforcement learning environments provide agents with a sparse team-based reward, as well as a dense agent-specific reward that incentivizes learning basic skills. Training policies solely on the team-based reward is oft en difficult due to its sparsity. Furthermore, relying solely on the agent-specific reward is sub-optimal because it usually does not capture the team coordination objective. A common approach is to use reward shaping to construct a proxy reward by combining the individual rewards. However, this requires manual tuning for each environment. We introduce Multiagent Evolutionary Reinforcement Learning (MERL), a split-level training platform that handles the two objectives separately through two optimization processes. An evolutionary algorithm maximizes the sparse team-based objective through neuroevolution on a population of teams. Concurrently, a gradient-based optimizer trains policies to only maximize the dense agent-specific rewards. The gradient-based policies are periodically added to the evolutionary population as a way of information transfer between the two optimization processes. This enables the evolutionary algorithm to use skills learned via the agent-specific rewards toward optimizing the global objective. Results demonstrate that MERL significantly outperforms state-of-the-art methods, such as MADDPG, on a number of difficult coordination benchmarks.
84 - Qi Yang , Peng Yang , Ke Tang 2021
The past decade has seen the rapid development of Reinforcement Learning, which acquires impressive performance with numerous training resources. However, one of the greatest challenges in RL is generalization efficiency (i.e., generalization perform ance in a unit time). This paper proposes a framework of Active Reinforcement Learning (ARL) over MDPs to improve generalization efficiency in a limited resource by instance selection. Given a number of instances, the algorithm chooses out valuable instances as training sets while training the policy, thereby costing fewer resources. Unlike existing approaches, we attempt to actively select and use training data rather than train on all the given data, thereby costing fewer resources. Furthermore, we introduce a general instance evaluation metrics and selection mechanism into the framework. Experiments results reveal that the proposed framework with Proximal Policy Optimization as policy optimizer can effectively improve generalization efficiency than unselect-ed and unbiased selected methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا