ﻻ يوجد ملخص باللغة العربية
We propose a new type of locally interacting quantum circuits which are generated by unitary interactions round-a-face (IRF). Specifically, we discuss a set (or manifold) of dual-unitary IRFs with local Hilbert space dimension $d$ (DUIRF$(d)$) which generate unitary evolutions both in space and time directions of an extended 1+1 dimensional lattice. We show how arbitrary dynamical correlation functions of local observables can be evaluated in terms of finite dimensional completely positive trace preserving unital maps, in complete analogy to recently studied circuits made of dual unitary brick gates (DUBG). In fact, we show that the simplest non-trivial (non-vanishing) local correlation functions in dual-unitary IRF circuits involve observables non-trivially supported on at least two sites. We completely characterise the 10-dimensional manifold of DUIRF$(2)$ for qubits ($d=2$) and provide, for $d=3,4,5,6,7$, empirical estimates of its dimensionality based on numerically determined dimensions of tangent spaces at an ensemble of random instances of dual-unitary IRF gates. In parallel, we apply the same algorithm to determine ${rm dim},{rm DUBG}(d)$ and show that they are of similar order though systematically larger than ${rm dim},{rm DUIRF}(d)$ for $d=2,3,4,5,6,7$. It is remarkable that both sets have rather complex topology for $dge 3$ in the sense that the dimension of the tangent space varies among different randomly generated points of the set. Finally, we provide additional data on dimensionality of the chiral extension of DUBG circuits with distinct local Hilbert spaces of dimensions $d eq d$ residing at even/odd lattice sites.
It is suggested that many-body quantum chaos appears as spontaneous symmetry breaking of unitarity in interacting quantum many-body systems. It has been shown that many-body level statistics, probed by the spectral form factor (SFF) defined as $K(bet
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functi
We study the consequences of having translational invariance in space and in time in many-body quantum chaotic systems. We consider an ensemble of random quantum circuits, composed of single-site random unitaries and nearest neighbour couplings, as a
We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a conserved charge. We compute the spectral form factor $K(t)$ analytically for a minimal Floquet circuit model that has a $U(1)$ symmetry encoded via au
We consider a non-interacting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model) - a generic model of single-particle quantum chaos. We study the corresponding many-partic