ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics and thermodynamics of a topological transition in spin ice materials under strain

131   0   0.0 ( 0 )
 نشر من قبل Lucas Pili
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study single crystals of Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ under magnetic field and stress applied along their [001] direction. We find that many of the features that the emergent gauge field of spin ice confers to the macroscopic magnetic properties are preserved in spite of the finite temperature. The magnetisation vs. field shows an upward convexity within a broad range of fields, while the static and dynamic susceptibilities present a peculiar peak. Following this feature for both compounds, we determine a single experimental transition curve: that for the Kasteleyn transition in three dimensions, proposed more than a decade ago. Additionally, we observe that compression up to $-0.8%$ along [001] does not significantly change the thermodynamics. However, the dynamical response of Ho$_2$Ti$_2$O$_7$ is quite sensitive to changes introduced in the ${rm Ho}^{3+}$ environment. Uniaxial compression can thus open up experimental access to equilibrium properties of spin ice at low temperatures.



قيم البحث

اقرأ أيضاً

At low temperatures, a spin ice enters a Coulomb phase - a state with algebraic correlations and topologically constrained spin configurations. In Ho2Ti2O7, we have observed experimentally that this process is accompanied by a non-standard temperatur e evolution of the wave vector dependent magnetic susceptibility, as measured by neutron scattering. Analytical and numerical approaches reveal signatures of a crossover between two Curie laws, one characterizing the high temperature paramagnetic regime, and the other the low temperature topologically constrained regime, which we call the spin liquid Curie law. The theory is shown to be in excellent agreement with neutron scattering experiments. On a more general footing, i) the existence of two Curie laws appears to be a general property of the emergent gauge field for a classical spin liquid, and ii) sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials; iii) the mapping between gauge and spin degrees of freedom means that the susceptibility at finite wave vector can be used as a local probe of fluctuations among topological sectors.
Magnetic monopoles have eluded experimental detection since their prediction nearly a century ago by Dirac. Recently it has been shown that classical analogues of these enigmatic particles occur as excitations out of the topological ground state of a model magnetic system, dipolar spin ice. These quasi-particle excitations do not require a modification of Maxwells equations, but they do interact via Coulombs law and are of magnetic origin. In this paper we present an experimentally measurable signature of monopole dynamics and show that magnetic relaxation measurements in the spin ice material $Dy_{2}Ti_{2}O_{7}$ can be interpreted entirely in terms of the diffusive motion of monopoles in the grand canonical ensemble, constrained by a network of Dirac strings filling the quasi-particle vacuum. In a magnetic field the topology of the network prevents charge flow in the steady state, but there is a monopole density gradient near the surface of an open system.
We study the low-temperature behaviour of spin ice when uniaxial pressure induces a tetragonal distortion. There is a phase transition between a Coulomb liquid and a fully magnetised phase. Unusually, it combines features of discontinuous and continu ous transitions: the order parameter exhibits a jump, but this is accompanied by a divergent susceptibility and vanishing domain wall tension. All these aspects can be understood as a consequence of an emergent SU(2) symmetry at the critical point. We map out a possible experimental realisation.
We investigate the order of the topological quantum phase transition in a two dimensional quadrupolar topological insulator within a thermodynamic approach. Using numerical methods, we separate the bulk, edge and corner contributions to the grand pot ential and detect different phase transitions in the topological phase diagram. The transitions from the quadrupolar to the trivial or to the dipolar phases are well captured by the thermodynamic potential. On the other hand, we have to resort to a grand potential based on the Wannier bands to describe the transition from the trivial to the dipolar phase. The critical exponents and the order of the phase transitions are determined and discussed in the light of the Josephson hyperscaling relation.
Properties of systems driven by white non-Gaussian noises can be very different from these systems driven by the white Gaussian noise. We investigate stationary probability densities for systems driven by $alpha$-stable Levy type noises, which provid e natural extension to the Gaussian noise having however a new property mainly a possibility of being asymmetric. Stationary probability densities are examined for a particle moving in parabolic, quartic and in generic double well potential models subjected to the action of $alpha$-stable noises. Relevant solutions are constructed by methods of stochastic dynamics. In situations where analytical results are known they are compared with numerical results. Furthermore, the problem of estimation of the parameters of stationary densities is investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا