We report a systematic magnetotransport study of superconducting infinite-layer nickelate thin films Nd$_{1-x}$Sr$_x$NiO$_2$ with $0.15 leq x leq 0.225$. By suppressing superconductivity with out-of-plane magnetic fields up to 37.5 T, we find that the normal state resistivity of Nd$_{1-x}$Sr$_x$NiO$_2$ is characterized by a crossover from a metallic $T^2$-behavior to an insulating log(1/$T$)-behavior for all $x$ except $x = 0.225$, at which a metallic behavior is found to persist down to subkelvin temperatures. Our findings suggest the insulator-metal crossover is driven not by disorder, but by strong electron correlations and the possible presence of a competing order parameter.