ﻻ يوجد ملخص باللغة العربية
We report a systematic magnetotransport study of superconducting infinite-layer nickelate thin films Nd$_{1-x}$Sr$_x$NiO$_2$ with $0.15 leq x leq 0.225$. By suppressing superconductivity with out-of-plane magnetic fields up to 37.5 T, we find that the normal state resistivity of Nd$_{1-x}$Sr$_x$NiO$_2$ is characterized by a crossover from a metallic $T^2$-behavior to an insulating log(1/$T$)-behavior for all $x$ except $x = 0.225$, at which a metallic behavior is found to persist down to subkelvin temperatures. Our findings suggest the insulator-metal crossover is driven not by disorder, but by strong electron correlations and the possible presence of a competing order parameter.
To understand the superconductivity recently discovered in Nd$_{0.8}$Sr$_{0.2}$NiO$_2$, we carried out LDA+DMFT (local density approximation plus dynamical mean-field theory) and magnetic force response calculations. The on-site correlation in Ni-$3d
We investigate charge distribution in the recently discovered high-$T_c$ superconductors, layered nickelates. With increasing value of charge-transfer energy we observe the expected crossover from the cuprate to the local triplet regime upon hole dop
Neutron scattering from high-quality YBCO6.334 single crystals with a T$_c$ of 8.4 K shows that there is no coexistence with long-range antiferromagnetic order at this very low, near-critical doping of $sim$0.055, in contrast to claims based on local
Despite the recent discovery of superconductivity in Nd$_{1-x}$Sr$_{x}$NiO$_2$ thin films, the absence of superconductivity and antiferromagnetism in their bulk materials remain a puzzle. Here we report the $^{1}$H NMR measurements on powdered Nd$_{0
We investigate the in-plane anisotropy of Fe 3d orbitals occurring in a wide temperature and composition range of BaFe2(As1-xPx)2 system. By employing the angle-resolved photoemission spectroscopy, the lifting of degeneracy in dxz and dyz orbitals at