ﻻ يوجد ملخص باللغة العربية
The mechanical responses of single crystalline Body-Centered Cubic (BCC) metals, such as molybdenum (Mo), outperform other metals at high temperatures, so much so that they are considered as excellent candidates for applications under extreme conditions, such as the divertor of fusion reactors. The excellent thermomechanical stability of molybdenum at high temperatures (400-1000$^{rm o}$C) has also been detected through nanoindentation, pointing towards connections to emergent local dislocation mechanisms related to defect nucleation. In this work, we carry out a computational study of the effects of high temperature on the mechanical deformation properties of single crystalline Mo under nanoindentation. Molecular dynamics (MD) simulations of spherical nanoindentation are performed at two indenter tip diameters and crystalline sample orientations [100], [110], and [111], for the temperature range of 10-1000K. We investigate how the increase of temperature influences the nanoindentation process, modifying dislocation densities, mechanisms, atomic displacements and also, hardness, in agreement with reported experimental measurements. Our results suggest that the characteristic formation and high-temperature stability of [001] dislocation junctions in Mo during nanoindentation, in contrast to other BCC metals, may be the cause of the persistent thermomechanical stability of Mo.
Superconductivity in group IV semiconductors is desired for hybrid devices combining both semiconducting and superconducting properties. Following boron doped diamond and Si, superconductivity has been observed in gallium doped Ge, however the obtain
Molecular dynamics simulations are performed to investigate the role of a coherent {Sigma}3 (111) twin boundary on the plastic deformation behavior of Cu nanopillars. Our work reveals that the mechanical response of pillars with and without the twin
A boost in the development of flexible and wearable electronics facilitates the design of new materials to be applied as transparent conducting films (TCFs). Although single-walled carbon nanotube (SWCNT) films are the most promising candidates for f
In a joint theoretical and experimental investigation we show that a series of transition metals with strained body-centered cubic lattice ---W, Ta, Nb, and Mo--- host surface states that are topologically protected by mirror symmetry. Our finding ex
Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission