ترغب بنشر مسار تعليمي؟ اضغط هنا

Autonomous Experiments for Neutron Three-Axis Spectrometers (TAS) with Log-Gaussian Processes

79   0   0.0 ( 0 )
 نشر من قبل Mario Teixeira Parente
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Autonomous experiments are excellent tools to increase the efficiency of material discovery. Indeed, AI and ML methods can help optimizing valuable experimental resources as, for example, beam time in neutron scattering experiments, in addition to scientists knowledge and experience. Active learning methods form a particular class of techniques that acquire knowledge on a specific quantity of interest by autonomous decisions on what or where to investigate next based on previous measurements. For instance, Gaussian Process Regression (GPR) is a well-known technique that can be exploited to accomplish active learning tasks for scattering experiments as was recently demonstrated. Gaussian processes are not only capable to approximate functions by their posterior mean function, but can also quantify uncertainty about the approximation itself. Hence, if we perform function evaluations at locations of highest uncertainty, the function can be optimally learned in an iterative manner. We suggest the use of log-Gaussian processes, being a natural approach to successfully conduct autonomous neutron scattering experiments in general and TAS experiments with the instrument PANDA at MLZ in particular.



قيم البحث

اقرأ أيضاً

A method to perform unfolding with Gaussian processes (GPs) is presented. Using Bayesian regression, we define an estimator for the underlying truth distribution as the mode of the posterior. We show that in the case where the bin contents are distri buted approximately according to a Gaussian, this estimator is equivalent to the mean function of a GP conditioned on the maximum likelihood estimator. Regularisation is introduced via the kernel function of the GP, which has a natural interpretation as the covariance of the underlying distribution. This novel approach allows for the regularisation to be informed by prior knowledge of the underlying distribution, and for it to be varied along the spectrum. In addition, the full statistical covariance matrix for the estimator is obtained as part of the result. The method is applied to two examples: a double-peaked bimodal distribution and a falling spectrum.
Novel multiplexing triple-axis neutron scattering spectrometers yield significant improvements of the common triple-axis instruments. While the planar scattering geometry keeps ensuring compatibility with complex sample environments, a simultaneous d etection of scattered neutrons at various angles and energies leads to tremendous improvements in the data acquisition rate. Here we report on the software package MJOLNIR that we have developed to handle the resulting enhancement in data complexity. Using data from the new CAMEA spectrometer of the Swiss Spallation Neutron Source at the Paul Scherrer Institut, we show how the software reduces, visualises and treats observables measured on multiplexing spectrometers. The software package has been generalised to a uniformed framework, allowing for collaborations across multiplexing instruments at different facilities, further facilitating new developments in data treatment, such as fitting routines and modelling of multi-dimensional data.
93 - D. J. Mikkelson 2002
The overall design of the Integrated Spectral Analysis Workbench (ISAW), being developed at Argonne, provides for an extensible, highly interactive, collaborating set of viewers for neutron scattering data. Large arbitrary collections of spectra from multiple detectors can be viewed as an image, a scrolled list of individual graphs, or using a 3D representation of the instrument showing the detector positions. Data from an area detector can be displayed using a contour or intensity map as well as an interactive table. Selected spectra can be displayed in tables or on a conventional graph. A unique characteristic of these viewers is their interactivity and coordination. The position pointed at by the user in one viewer is sent to other viewers of the same DataSet so they can track the position and display relevant information. Specialized viewers for single crystal neutron diffractometers are being developed. A proof-of-concept viewer that directly displays the 3D reciprocal lattice from a complete series of runs on a single crystal diffractometer has been implemented.
Neutron direct-geometry time-of-flight chopper spectroscopy is instrumental in studying fundamental excitations of vibrational and/or magnetic origin. We report here that techniques in super-resolution optical imagery (which is in real-space) can be adapted to enhance resolution and reduce noise for a neutron spectroscopy (an instrument for mapping excitations in reciprocal space). The procedure to reconstruct super-resolution energy spectra of phonon density of states relies on a realization of multi-frame registration, accurate determination of the energy-dependent point spread function, asymmetric nature of instrument resolution broadening, and iterative reconstructions. Applying these methods to phonon density of states data for a graphite sample demonstrates contrast enhancement, noise reduction, and ~5-fold improvement over nominal energy resolution. The data were collected at three different incident energies measured at the Wide Angular-Range Chopper Spectrometer at the Spallation Neutron Source.
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche size tends to a stationary distribution, (Finite Scale statistics with finite mean and variance or Power-Law tailed statistics with exponent in (1, 3]), or instead to a non-stationary regime with Log-Normal statistics. Numerical results and their statistical analysis are presented for a uniformly distributed growth rate, which are corroborated and generalized by analytical results. The latter show that the numerically observed avalanche regimes exist for a wide family of growth rate distributions and provide a precise definition of the boundaries between the three regimes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا