ﻻ يوجد ملخص باللغة العربية
Autonomous experiments are excellent tools to increase the efficiency of material discovery. Indeed, AI and ML methods can help optimizing valuable experimental resources as, for example, beam time in neutron scattering experiments, in addition to scientists knowledge and experience. Active learning methods form a particular class of techniques that acquire knowledge on a specific quantity of interest by autonomous decisions on what or where to investigate next based on previous measurements. For instance, Gaussian Process Regression (GPR) is a well-known technique that can be exploited to accomplish active learning tasks for scattering experiments as was recently demonstrated. Gaussian processes are not only capable to approximate functions by their posterior mean function, but can also quantify uncertainty about the approximation itself. Hence, if we perform function evaluations at locations of highest uncertainty, the function can be optimally learned in an iterative manner. We suggest the use of log-Gaussian processes, being a natural approach to successfully conduct autonomous neutron scattering experiments in general and TAS experiments with the instrument PANDA at MLZ in particular.
A method to perform unfolding with Gaussian processes (GPs) is presented. Using Bayesian regression, we define an estimator for the underlying truth distribution as the mode of the posterior. We show that in the case where the bin contents are distri
Novel multiplexing triple-axis neutron scattering spectrometers yield significant improvements of the common triple-axis instruments. While the planar scattering geometry keeps ensuring compatibility with complex sample environments, a simultaneous d
The overall design of the Integrated Spectral Analysis Workbench (ISAW), being developed at Argonne, provides for an extensible, highly interactive, collaborating set of viewers for neutron scattering data. Large arbitrary collections of spectra from
Neutron direct-geometry time-of-flight chopper spectroscopy is instrumental in studying fundamental excitations of vibrational and/or magnetic origin. We report here that techniques in super-resolution optical imagery (which is in real-space) can be
We study the avalanche statistics observed in a minimal random growth model. The growth is governed by a reproduction rate obeying a probability distribution with finite mean a and variance va. These two control parameters determine if the avalanche