ترغب بنشر مسار تعليمي؟ اضغط هنا

Nodeless superconductivity in the centro- and noncentrosymmetric rhenium-boron superconductors

140   0   0.0 ( 0 )
 نشر من قبل Tian Shang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a comprehensive study of the centrosymmetric Re$_3$B and noncentrosymmetric Re$_7$B$_3$ superconductors. At a macroscopic level, their bulk superconductivity (SC), with $T_c$ = 5.1 K (Re$_3$B) and 3.3 K (Re$_7$B$_3$), was characterized via electrical-resistivity, magnetization, and heat-capacity measurements, while their microscopic superconducting properties were investigated by means of muon-spin rotation/relaxation ($mu$SR). In both Re$_3$B and Re$_7$B$_3$ the low-$T$ zero-field electronic specific heat and the superfluid density (determined via tranverse-field $mu$SR) suggest a nodeless SC. Both compounds exhibit some features of multigap SC, as evidenced by temperature-dependent upper critical fields $H_mathrm{c2}(T)$, as well as by electronic band-structure calculations. The absence of spontaneous magnetic fields below the onset of SC, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of both Re$_3$B and Re$_7$B$_3$. Our results suggest that a lack of inversion symmetry and the accompanying antisymmetric spin-orbit coupling effects are not essential for the occurrence of multigap SC in these rhenium-boron compounds.



قيم البحث

اقرأ أيضاً

We report a comprehensive study of the noncentrosymmetric superconductor Mo$_3$P. Its bulk superconductivity, with $T_c = 5.5$ K, was characterized via electrical resistivity, magnetization, and heat-capacity measurements, while its microscopic elect ronic properties were investigated by means of muon-spin rotation/relaxation ($mu$SR) and nuclear magnetic resonance (NMR) techniques. In the normal state, NMR relaxation data indicate an almost ideal metallic behavior, confirmed by band-structure calculations, which suggest a relatively high electron density of states, dominated by the Mo $4d$-orbitals. The low-temperature superfluid density, determined via transverse-field $mu$SR and electronic specific heat, suggest a fully-gapped superconducting state in Mo$_3$P, with $Delta_0= 0.83$ meV, the same as the BCS gap value in the weak-coupling case, and a zero-temperature magnetic penetration depth $lambda_0 = 126$ nm. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined from zero-field $mu$SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of Mo$_3$P and, hence, spin-singlet pairing.
Recently, a new family of iron-based superconductors called 12442 was discovered and the muon spin relaxation ($mu$SR) measurements on KCa$_2$Fe$_4$As$_4$F$_2$ and CsCa$_2$Fe$_4$As$_4$F$_2$ polycrystals, two members of the family, indicated that both have a nodal superconducting gap structure with $s+d$ pairing symmetry. Here we report the ultralow-temperature thermal conductivity measurements on CsCa$_2$Fe$_4$As$_4$F$_2$ single crystals ($T_c$ = 29.3 K). A negligible residual linear term $kappa_0/T$ in zero field and the field dependence of $kappa_0/T$ suggest multiple nodeless superconducting gaps in CsCa$_2$Fe$_4$As$_4$F$_2$. This gap structure is similar to CaKFe$_4$As$_4$ and moderately doped Ba$_{1-x}$K$_x$Fe$_2$As$_2$, but contrasts to the nodal gap structure indicated by the $mu$SR measurements on CsCa$_2$Fe$_4$As$_4$F$_2$ polycrystals.
We grew the single crystals of the SnAs-based van der Waals (vdW)-type superconductor NaSn$_2$As$_2$ and systematically measured its resistivity, specific heat, and ultralow-temperature thermal conductivity. The superconducting transition temperature $T_c$ = 1.60 K of our single crystal is 0.3 K higher than that previously reported. A weak but intrinsic anomaly situated at 193 K is observed in both resistivity and specific heat, which likely arises from a charge-density-wave (CDW) instability. Ultralow-temperature thermal conductivity measurements reveal a fully-gapped superconducting state with a negligible residual linear term in zero magnetic field, and the field dependence of $kappa_0 / T$ further suggests NaSn$_2$As$_2$ is an $s$-wave superconductor.
84 - B. Li , C. Q. Xu , W. Zhou 2017
Superconductivity in noncentrosymmetric compounds has attracted sustained interest in the last decades. Here we present a detailed study on the transport, thermodynamic properties and the band structure of the noncentrosymmetric superconductor La$_7$ Ir$_3$ ($T_c$ $sim$2.3 K) that was recently proposed to break the time-reversal symmetry. It is found that La$_7$Ir$_3$ displays a moderately large electronic heat capacity (Sommerfeld coefficient $gamma_n$ $sim$ 53.1 mJ/mol $text{K}^2$) and a significantly enhanced Kadowaki-Woods ratio (KWR $sim$ 32 $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$) that is greater than the typical value ($sim$ 10 $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$) for strongly correlated electron systems. The upper critical field $H_{c2}$ was seen to be nicely described by the single-band Werthamer-Helfand-Hohenberg model down to very low temperatures. The hydrostatic pressure effects on the superconductivity were also investigated. The heat capacity below $T_c$ reveals a dominant s-wave gap with the magnitude close to the BCS value. The first-principles calculations yield the electron-phonon coupling constant $lambda$ = 0.81 and the logarithmically averaged frequency $omega_{ln}$ = 78.5 K, resulting in a theoretical $T_c$ = 2.5 K, close to the experimental value. Our calculations suggest that the enhanced electronic heat capacity is more likely due to electron-phonon coupling, rather than the electron-electron correlation effects. Collectively, these results place severe constraints on any theory of exotic superconductivity in this system.
100 - S. Cui , L. P. He , X. C. Hong 2016
Recently it was found that selenium doping can suppress the charge-density-wave (CDW) order and induce bulk superconductivity in ZrTe$_3$. The observed superconducting dome suggests the existence of a CDW quantum critical point (QCP) in ZrTe$_{3-x}$S e$_x$ near $x approx$ 0.04. To elucidate its superconducting state near the CDW QCP, we measure the thermal conductivity of two ZrTe$_{3-x}$Se$_x$ single crystals ($x$ = 0.044 and 0.051) down to 80 mK. For both samples, the residual linear term $kappa_0/T$ at zero field is negligible, which is a clear evidence for nodeless superconducting gap. Furthermore, the field dependence of $kappa_0/T$ manifests multigap behavior. These results demonstrate multiple nodeless superconducting gaps in ZrTe$_{3-x}$Se$_x$, which indicates conventional superconductivity despite of the existence of a CDW QCP.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا