ﻻ يوجد ملخص باللغة العربية
The Global Wheat Head Detection (GWHD) dataset was created in 2020 and has assembled 193,634 labelled wheat heads from 4,700 RGB images acquired from various acquisition platforms and 7 countries/institutions. With an associated competition hosted in Kaggle, GWHD has successfully attracted attention from both the computer vision and agricultural science communities. From this first experience in 2020, a few avenues for improvements have been identified, especially from the perspective of data size, head diversity and label reliability. To address these issues, the 2020 dataset has been reexamined, relabeled, and augmented by adding 1,722 images from 5 additional countries, allowing for 81,553 additional wheat heads to be added. We now release a new version of the Global Wheat Head Detection (GWHD) dataset in 2021, which is bigger, more diverse, and less noisy than the 2020 version. The GWHD 2021 is now publicly available at http://www.global-wheat.com/ and a new data challenge has been organized on AIcrowd to make use of this updated dataset.
Detection of wheat heads is an important task allowing to estimate pertinent traits including head population density and head characteristics such as sanitary state, size, maturity stage and the presence of awns. Several studies developed methods fo
When people deliver a speech, they naturally move heads, and this rhythmic head motion conveys prosodic information. However, generating a lip-synced video while moving head naturally is challenging. While remarkably successful, existing works either
Augmented and virtual reality is being deployed in different fields of applications. Such applications might involve accessing or processing critical and sensitive information, which requires strict and continuous access control. Given that Head-Moun
Occlusions, complex backgrounds, scale variations and non-uniform distributions present great challenges for crowd counting in practical applications. In this paper, we propose a novel method using an attention model to exploit head locations which a
We propose an audio-driven talking-head method to generate photo-realistic talking-head videos from a single reference image. In this work, we tackle two key challenges: (i) producing natural head motions that match speech prosody, and (ii) maintaini