ﻻ يوجد ملخص باللغة العربية
The interaction between a central qubit spin and a surrounding bath of spins is critical to spin-based solid state quantum sensing and quantum information processing. Spin-bath interactions are typically strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance to simulate motional averaging of anisotropic interactions, such as dipolar coupling between nuclear spins. Here, we show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $^{13}$C nuclear spins in a diamond rotated at up to 300,000rpm introduces decoherence into the system via frequency-modulation of the nuclear spin Larmor precession. The presence of an off-axis magnetic field necessary for averaging of the dipolar coupling leads to a rotational dependence of the electron-nuclear hyperfine interaction, which cannot be averaged out with experimentally achievable rotation speeds. Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
A major problem facing the realisation of scalable solid-state quantum computing is that of overcoming decoherence - the process whereby phase information encoded in a qubit is lost as the qubit interacts with its environment. Due to the vast number
A precessing spin observed in a rotating frame of reference appears frequency-shifted, an effect analogous to the precession of a Foucault pendulum observed on the rotating Earth. This frequency shift can be understood as arising from a magnetic pseu
We apply the time-convolutionless (TCL) projection operator technique to the model of a central spin which is coupled to a spin bath via nonuniform Heisenberg interaction. The second-order results of the TCL method for the coherences and populations
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing. When coupled to the spin of an optically-active electron, nuclear spins can be rapidly pola
In this paper, we study the electron spin decoherence of single defects in silicon carbide (SiC) nuclear spin bath. We find that, although the natural abundance of $^{29}rm{Si}$ ($p_{rm{Si}}=4.7%$) is about 4 times larger than that of $^{13}{rm C}$ (