ﻻ يوجد ملخص باللغة العربية
Background. Digital pathology has aroused widespread interest in modern pathology. The key of digitalization is to scan the whole slide image (WSI) at high magnification. The lager the magnification is, the richer details WSI will provide, but the scanning time is longer and the file size of obtained is larger. Methods. We design a strategy to scan slides with low resolution (5X) and a super-resolution method is proposed to restore the image details when in diagnosis. The method is based on a multi-scale generative adversarial network, which sequentially generates three high-resolution images such as 10X, 20X and 40X. Results. The peak-signal-to-noise-ratio of 10X to 40X generated images are 24.16, 22.27 and 20.44, and the structural-similarity-index are 0.845, 0.680 and 0.512, which are better than other super-resolution networks. Visual scoring average and standard deviation from three pathologists is 3.63 plus-minus 0.52, 3.70 plus-minus 0.57 and 3.74 plus-minus 0.56 and the p value of analysis of variance is 0.37, indicating that generated images include sufficient information for diagnosis. The average value of Kappa test is 0.99, meaning the diagnosis of generated images is highly consistent with that of the real images. Conclusion. This proposed method can generate high-quality 10X, 20X, 40X images from 5X images at the same time, in which the time and storage costs of digitalization can be effectively reduced up to 1/64 of the previous costs. The proposed method provides a better alternative for low-cost storage, faster image share of digital pathology. Keywords. Digital pathology; Super-resolution; Low resolution scanning; Low cost
We describe our solution for the PIRM Super-Resolution Challenge 2018 where we achieved the 2nd best perceptual quality for average RMSE<=16, 5th best for RMSE<=12.5, and 7th best for RMSE<=11.5. We modify a recently proposed Multi-Grid Back-Projecti
Recently, the single image super-resolution (SISR) approaches with deep and complex convolutional neural network structures have achieved promising performance. However, those methods improve the performance at the cost of higher memory consumption,
Deep convolutional neural networks (DCNNs) have shown dominant performance in the task of super-resolution (SR). However, their heavy memory cost and computation overhead significantly restrict their practical deployments on resource-limited devices,
This paper explores an efficient solution for Space-time Super-Resolution, aiming to generate High-resolution Slow-motion videos from Low Resolution and Low Frame rate videos. A simplistic solution is the sequential running of Video Super Resolution
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks. Our approach is derived by introducing a learned error metric and a latent representation of the target image, which