ﻻ يوجد ملخص باللغة العربية
We show that if one starts with a Universe with some matter and a cosmological constant, then quantum mechanics naturally induces an attractive gravitational potential and an effective Newtons coupling. Thus gravity is an emergent phenomenon and what should be quantized are the fundamental degrees of freedom from which it emerges.
General theory of relativity (or Lovelock extensions) is a dynamical theory; given an initial configuration on a space-like hypersurface, it makes a definite prediction of the final configuration. Recent developments suggest that gravity may be descr
We propose gravitational microlensing as a way of testing the emergent gravity theory recently proposed by Eric Verlinde~cite{Verlinde:2016toy}. We consider two limiting cases: the dark mass of maximally anisotropic pressures (Case I) and of isotropi
In this work we derive a generalized Newtonian gravitational force and show that it can account for the anomalous galactic rotation curves. We derive the entropy-area relationship applying the Feynman-Hibbs procedure to the supersymmetric Wheeler-DeW
We consider the question of whether consistency arguments based on measurement theory show that the gravitational field must be quantized. Motivated by the argument of Eppley and Hannah, we apply a DeWitt-type measurement analysis to a coupled system
Einsteins general relativity can emerge from pregeometry, with the metric composed of more fundamental fields. We formulate euclidean pregeometry as a $SO(4)$ - Yang-Mills theory. In addition to the gauge fields we include a vector field in the vecto