ﻻ يوجد ملخص باللغة العربية
Hydrogen intensity mapping is a new field in astronomy that promises to make three-dimensional maps of the matter distribution of the Universe using the redshifted $21,textrm{cm}$ line of neutral hydrogen gas (HI). Several ongoing and upcoming radio interferometers, such as Tianlai, CHIME, HERA, HIRAX, etc. are using this technique. These instruments are designed to map large swaths of the sky by drift scanning over periods of many months. One of the challenges of the observations is that the daytime data is contaminated by strong radio signals from the Sun. In the case of Tianlai, this results in almost half of the measured data being unusable. We try to address this issue by developing an algorithm for solar contamination removal (AlgoSCR) from the radio data. The algorithm is based on an eigenvalue analysis of the visibility matrix, and hence is applicable only to interferometers. We apply AlgoSCR to simulated visibilities, as well as real daytime data from the Tianlai dish array. The algorithm can remove most of the solar contamination without seriously affecting other sky signals and thus makes the data usable for certain applications.
Next generation radio telescopes, like the Square Kilometre Array, will acquire an unprecedented amount of data for radio astronomy. The development of fast, parallelisable or distributed algorithms for handling such large-scale data sets is of prime
New and upcoming radio interferometers will produce unprecedented amounts of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations rest
The Epoch of Reionisation (EoR) is the period within which the neutral universe transitioned to an ionised one. This period remains unobserved using low-frequency radio interferometers which target the 21 cm signal of neutral hydrogen emitted in this
The short-spacing problem describes the inherent inability of radio-interferometric arrays to measure the integrated flux and structure of diffuse emission associated with extended sources. New interferometric arrays, such as SKA, require solutions t
High-resolution astronomical imaging at sub-GHz radio frequencies has been available for more than 15 years, with the VLA at 74 and 330 MHz, and the GMRT at 150, 240, 330 and 610 MHz. Recent developments include wide-bandwidth upgrades for VLA and GM