ﻻ يوجد ملخص باللغة العربية
We use the Quantum Langevin equation as a starting point to study the response function, the position-velocity correlation function and the velocity autocorrelation function of a charged Quantum Brownian particle in a magnetic field coupled to a bath. We study two bath models -- the Ohmic bath model and the Drude bath model and make a detailed comparison in various time-temperature regimes. For both bath models there is a competition between the cyclotron frequency and the viscous damping rate giving rise to a transition from an oscillatory to a monotonic behaviour as the damping rate is increased. In the zero point fluctuation dominated low temperature regime, non-trivial noise correlations lead to some interesting features in this transition. We study the role of the memory time scale which comes into play in the Drude model and study the effect of this additional time scale. We discuss the experimental implications of our analysis in the context of experiments in cold ions.
A simple ansatz for the study of velocity autocorrelation functions in fluids at different timescales is proposed. The ansatz is based on an effective summation of the infinite continued fraction at a reasonable assumption about convergence of relaxa
Velocity autocorrelation functions (VAF) of the fluids are studied on short- and long-time scales within a unified approach. This approach is based on an effective summation of the infinite continued fraction at a reasonable assumption about converge
Extending a previous study of the velocity autocorrelation function (VAF) in a simulated Lennard-Jones fluid to cover higher-density and lower-temperature states, we show that the recently demonstrated multiexponential expansion allows for a full acc
Using the recently constructed covariant Ito-Langevin dynamics, we develop a covariant theory of non-equilibrium thermodynamics that is applicable to small systems with multiplicative noises and with slow variables forming curved manifolds. Assuming
Recently, it has been shown that there is a trade-off relation between thermodynamic cost and current fluctuations, referred to as the thermodynamic uncertainty relation (TUR). The TUR has been derived for various processes, such as discrete-time Mar