ترغب بنشر مسار تعليمي؟ اضغط هنا

Impossibility of Strongly-Linearizable Message-Passing Objects via Simulation by Single-Writer Registers

70   0   0.0 ( 0 )
 نشر من قبل Jennifer Welch
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A key way to construct complex distributed systems is through modular composition of linearizable concurrent objects. A prominent example is shared registers, which have crash-tolerant implementations on top of message-passing systems, allowing the advantages of shared memory to carry over to message-passing. Yet linearizable registers do not always behave properly when used inside randomized programs. A strengthening of linearizability, called strong linearizability, has been shown to preserve probabilistic behavior, as well as other hypersafety properties. In order to exploit composition and abstraction in message-passing systems, it is crucial to know whether there exist strongly-linearizable implementations of registers in message-passing. This paper answers the question in the negative: there are no strongly-linearizable fault-tolerant message-passing implementations of multi-writer registers, max-registers, snapshots or counters. This result is proved by reduction from the corresponding result by Helmi et al. The reduction is a novel extension of the BG simulation that connects shared-memory and message-passing, supports long-lived objects, and preserves strong linearizability. The main technical challenge arises from the discrepancy between the potentially minuscule fraction of failures to be tolerated in the simulated message-passing algorithm and the large fraction of failures that can afflict the simulating shared-memory system. The reduction is general and can be viewed as the inverse of the ABD simulation of shared memory in message-passing.



قيم البحث

اقرأ أيضاً

We prove that in asynchronous message-passing systems where at most one process may crash, there is no lock-free strongly linearizable implementation of a weak object that we call Test-or-Set (ToS). This object allows a single distinguished process t o apply the set operation once, and a different distinguished process to apply the test operation also once. Since this weak object can be directly implemented by a single-writer single-reader (SWSR) register (and other common objects such as max-register, snapshot and counter), this result implies that there is no $1$-resilient lock-free strongly linearizable implementation of a SWSR register (and of these other objects) in message-passing systems. We also prove that there is no $1$-resilient lock-free emph{write} strongly-linearizable implementation of a 2-writer 1-reader (2W1R) register in asynchronous message-passing systems.
The principal submatrix localization problem deals with recovering a $Ktimes K$ principal submatrix of elevated mean $mu$ in a large $ntimes n$ symmetric matrix subject to additive standard Gaussian noise. This problem serves as a prototypical exampl e for community detection, in which the community corresponds to the support of the submatrix. The main result of this paper is that in the regime $Omega(sqrt{n}) leq K leq o(n)$, the support of the submatrix can be weakly recovered (with $o(K)$ misclassification errors on average) by an optimized message passing algorithm if $lambda = mu^2K^2/n$, the signal-to-noise ratio, exceeds $1/e$. This extends a result by Deshpande and Montanari previously obtained for $K=Theta(sqrt{n}).$ In addition, the algorithm can be extended to provide exact recovery whenever information-theoretically possible and achieve the information limit of exact recovery as long as $K geq frac{n}{log n} (frac{1}{8e} + o(1))$. The total running time of the algorithm is $O(n^2log n)$. Another version of the submatrix localization problem, known as noisy biclustering, aims to recover a $K_1times K_2$ submatrix of elevated mean $mu$ in a large $n_1times n_2$ Gaussian matrix. The optimized message passing algorithm and its analysis are adapted to the bicluster problem assuming $Omega(sqrt{n_i}) leq K_i leq o(n_i)$ and $K_1asymp K_2.$ A sharp information-theoretic condition for the weak recovery of both clusters is also identified.
Message-passing models of distributed computing vary along numerous dimensions: degree of synchrony, kind of faults, number of faults... Unfortunately, the sheer number of models and their subtle distinctions hinder our ability to design a general th eory of message-passing models. One way out of this conundrum restricts communication to proceed by round. A great variety of message-passing models can then be captured in the Heard-Of model, through predicates on the messages sent in a round and received during or before this round. Then, the issue is to find the most accurate Heard-Of predicate to capture a given model. This is straightforward in synchronous models, because waiting for the upper bound on communication delay ensures that all available messages are received, while not waiting forever. On the other hand, asynchrony allows unbounded message delays. Is there nonetheless a meaningful characterization of asynchronous models by a Heard-Of predicate? We formalize this characterization by introducing Delivered collections: the collections of all messages delivered at each round, whether late or not. Predicates on Delivered collections capture message-passing models. The question is to determine which Heard-Of predicates can be generated by a given Delivered predicate. We answer this by formalizing strategies for when to change round. Thanks to a partial order on these strategies, we also find the best strategy for multiple models, where best intuitively means it waits for as many messages as possible while not waiting forever. Finally, a strategy for changing round that never blocks a process forever implements a Heard-Of predicate. This allows us to translate the order on strategies into an order on Heard-Of predicates. The characterizing predicate for a model is then the greatest element for that order, if it exists.
In sketched clustering, a dataset of $T$ samples is first sketched down to a vector of modest size, from which the centroids are subsequently extracted. Advantages include i) reduced storage complexity and ii) centroid extraction complexity independe nt of $T$. For the sketching methodology recently proposed by Keriven, et al., which can be interpreted as a random sampling of the empirical characteristic function, we propose a sketched clustering algorithm based on approximate message passing. Numerical experiments suggest that our approach is more efficient than the state-of-the-art sketched clustering algorithm CL-OMPR (in both computational and sample complexity) and more efficient than k-means++ when $T$ is large.
Collective communications, namely the patterns allgatherv, reduce_scatter, and allreduce in message-passing systems are optimised based on measurements at the installation time of the library. The algorithms used are set up in an initialisation phase of the communication, similar to the method used in so-called persistent collective communication introduced in the literature. For allgatherv and reduce_scatter the existing algorithms, recursive multiply/divide and cyclic shift (Brucks algorithm) are applied with a flexible number of communication ports per node. The algorithms for equal message sizes are used with non-equal message sizes together with a heuristic for rank reordering. The two communication patterns are applied in a plasma physics application that uses a specialised matrix-vector multiplication. For the allreduce pattern the cyclic shift algorithm is applied with a prefix operation. The data is gathered and scattered by the cores within the node and the communication algorithms are applied across the nodes. In general our routines outperform the non-persistent counterparts in established MPI libraries by up to one order of magnitude or show equal performance, with a few exceptions of number of nodes and message sizes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا