Is it possible to immediately distinguish a system made by an Avogadros number of identical elements and one with a single additional one? In this work, we show that a simple experiment can do so, yielding two qualitatively and quantitatively different outcomes depending on whether the system includes an even or an odd number of elements. We consider a typical (local) quantum-quench setup and calculate a generating function of the work done, namely, the Loschmidt echo, showing that it displays different features depending on the presence or absence of topological frustration. We employ the prototypical quantum Ising chain to illustrate this phenomenology, which we argue being generic for antiferromagnetic spin chains.