ﻻ يوجد ملخص باللغة العربية
Is it possible to immediately distinguish a system made by an Avogadros number of identical elements and one with a single additional one? In this work, we show that a simple experiment can do so, yielding two qualitatively and quantitatively different outcomes depending on whether the system includes an even or an odd number of elements. We consider a typical (local) quantum-quench setup and calculate a generating function of the work done, namely, the Loschmidt echo, showing that it displays different features depending on the presence or absence of topological frustration. We employ the prototypical quantum Ising chain to illustrate this phenomenology, which we argue being generic for antiferromagnetic spin chains.
We study a matrix element of the field operator in the Lieb-Liniger model using the Bethe ansatz technique coupled with a functional approach to compute Slavnov determinants. We obtain the matrix element exactly in the thermodynamic limit for any cou
At the core of every frustrated system, one can identify the existence of frustrated rings that are usually interpreted in terms of single--particle physics. We check this point of view through a careful analysis of the entanglement entropy of both m
Low frequency perturbations at the boundary of critical quantum chains can be understood in terms of the sequence of boundary conditions imposed by them, as has been previously demonstrated in the Ising and related fermion models. Using extensive num
We consider an integrable system of two one-dimensional fermionic chains connected by a link. The hopping constant at the link can be different from that in the bulk. Starting from an initial state in which the left chain is populated while the right
We construct a novel approach, based on thermodynamic geometry, to characterize first-order phase transitions from a microscopic perspective, through the scalar curvature in the equilibrium thermodynamic state space. Our method resolves key theoretic