ﻻ يوجد ملخص باللغة العربية
A previous authors paper introduces an accelerated composite gradient (ACG) variant, namely AC-ACG, for solving nonconvex smooth composite optimization (N-SCO) problems. In contrast to other ACG variants, AC-ACG estimates the local upper curvature of the N-SCO problem by using the average of the observed upper-Lipschitz curvatures obtained during the previous iterations, and uses this estimation and two composite resolvent evaluations to compute the next iterate. This paper presents an alternative FISTA-type ACG variant, namely AC-FISTA, which has the following additional features: i) it performs an average of one composite resolvent evaluation per iteration; and ii) it estimates the local upper curvature by using the average of the previously observed upper (instead of upper-Lipschitz) curvatures. These two properties acting together yield a practical AC-FISTA variant which substantially outperforms earlier ACG variants, including the AC-ACG variants discussed in the aforementioned authors paper.
Many large-scale optimization problems can be expressed as composite optimization models. Accelerated first-order methods such as the fast iterative shrinkage-thresholding algorithm (FISTA) have proven effective for numerous large composite models. I
While many distributed optimization algorithms have been proposed for solving smooth or convex problems over the networks, few of them can handle non-convex and non-smooth problems. Based on a proximal primal-dual approach, this paper presents a new
Stochastic gradient methods (SGMs) have been extensively used for solving stochastic problems or large-scale machine learning problems. Recent works employ various techniques to improve the convergence rate of SGMs for both convex and nonconvex cases
We propose an efficient algorithm for finding first-order Nash equilibria in min-max problems of the form $min_{x in X}max_{yin Y} F(x,y)$, where the objective function is smooth in both variables and concave with respect to $y$; the sets $X$ and $Y$
Nonconvex minimax problems appear frequently in emerging machine learning applications, such as generative adversarial networks and adversarial learning. Simple algorithms such as the gradient descent ascent (GDA) are the common practice for solving