ترغب بنشر مسار تعليمي؟ اضغط هنا

TabLeX: A Benchmark Dataset for Structure and Content Information Extraction from Scientific Tables

454   0   0.0 ( 0 )
 نشر من قبل Harsh Desai
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Information Extraction (IE) from the tables present in scientific articles is challenging due to complicated tabular representations and complex embedded text. This paper presents TabLeX, a large-scale benchmark dataset comprising table images generated from scientific articles. TabLeX consists of two subsets, one for table structure extraction and the other for table content extraction. Each table image is accompanied by its corresponding LATEX source code. To facilitate the development of robust table IE tools, TabLeX contains images in different aspect ratios and in a variety of fonts. Our analysis sheds light on the shortcomings of current state-of-the-art table extraction models and shows that they fail on even simple table images. Towards the end, we experiment with a transformer-based existing baseline to report performance scores. In contrast to the static benchmarks, we plan to augment this dataset with more complex and diverse tables at regular intervals.



قيم البحث

اقرأ أيضاً

149 - Yi Luan 2018
As a research community grows, more and more papers are published each year. As a result there is increasing demand for improved methods for finding relevant papers, automatically understanding the key ideas and recommending potential methods for a t arget problem. Despite advances in search engines, it is still hard to identify new technologies according to a researchers need. Due to the large variety of domains and extremely limited annotated resources, there has been relatively little work on leveraging natural language processing in scientific recommendation. In this proposal, we aim at making scientific recommendations by extracting scientific terms from a large collection of scientific papers and organizing the terms into a knowledge graph. In preliminary work, we trained a scientific term extractor using a small amount of annotated data and obtained state-of-the-art performance by leveraging large amount of unannotated papers through applying multiple semi-supervised approaches. We propose to construct a knowledge graph in a way that can make minimal use of hand annotated data, using only the extracted terms, unsupervised relational signals such as co-occurrence, and structural external resources such as Wikipedia. Latent relations between scientific terms can be learned from the graph. Recommendations will be made through graph inference for both observed and unobserved relational pairs.
Information extraction and data mining in biochemical literature is a daunting task that demands resource-intensive computation and appropriate means to scale knowledge ingestion. Being able to leverage this immense source of technical information he lps to drastically reduce costs and time to solution in multiple application fields from food safety to pharmaceutics. We present a scalable document ingestion system that integrates data from databases and publications (in PDF format) in a biochemistry knowledge graph (BCKG). The BCKG is a comprehensive source of knowledge that can be queried to retrieve known biochemical facts and to generate novel insights. After describing the knowledge ingestion framework, we showcase an application of our system in the field of carbohydrate enzymes. The BCKG represents a way to scale knowledge ingestion and automatically exploit prior knowledge to accelerate discovery in biochemical sciences.
Identification of new concepts in scientific literature can help power faceted search, scientific trend analysis, knowledge-base construction, and more, but current methods are lacking. Manual identification cannot keep up with the torrent of new pub lications, while the precision of existing automatic techniques is too low for many applications. We present an unsupervised concept extraction method for scientific literature that achieves much higher precision than previous work. Our approach relies on a simple but novel intuition: each scientific concept is likely to be introduced or popularized by a single paper that is disproportionately cited by subsequent papers mentioning the concept. From a corpus of computer science papers on arXiv, we find that our method achieves a Precision@1000 of 99%, compared to 86% for prior work, and a substantially better precision-yield trade-off across the top 15,000 extractions. To stimulate research in this area, we release our code and data (https://github.com/allenai/ForeCite).
109 - Lin Qiu , Hao Zhou , Yanru Qu 2018
Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements.
Data intensive research requires the support of appropriate datasets. However, it is often time-consuming to discover usable datasets matching a specific research topic. We formulate the dataset discovery problem on an attributed heterogeneous graph, which is composed of paper-paper citation, paper-dataset citation, and also paper content. We propose to characterize both paper and dataset nodes by their commonly shared latent topics, rather than learning user and item representations via canonical graph embedding models, because the usage of datasets and the themes of research projects can be understood on the common base of research topics. The relevant datasets to a given research project can then be inferred in the shared topic space. The experimental results show that our model can generate reasonable profiles for datasets, and recommend proper datasets for a query, which represents a research project linked with several papers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا