ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of nuclear spin relaxation time in lanthanum aluminate for development of polarized lanthanum target

108   0   0.0 ( 0 )
 نشر من قبل Kohei Ishizaki
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The nuclear spin-lattice relaxation time ($T_1$) of lanthanum and aluminum nuclei in a single crystal of lanthanum aluminate doped with neodymium ions is studied to estimate the feasibility of the dynamically polarized lanthanum target applicable to beam experiments. The application of our interest is the study of fundamental discrete symmetries in the spin optics of epithermal neutrons. This study requires a highly flexible choice of the applied magnetic field for neutron spin control and favors longer $T_1$ under lower magnetic field and at higher temperature. The $T_1$ of $^{139}{rm La}$ and ${}^{27}{rm Al}$ was measured under magnetic fields of $0.5$-$2.5$ T and at temperatures of $0.1$-$1.5$ K and found widely distributed up to 100 h. The result suggests that the $T_1$ can be as long as $T_1 sim$ 1 h at $0.1$ K with a magnetic field of $0.1$ T, which partially fulfills the requirement of the neutron beam experiment. Possible improvements to achieve a longer $T_1$ are discussed.



قيم البحث

اقرأ أيضاً

115 - T. Ohta , M. Fujiwara , K. Fukuda 2011
A portable NMR polarimeter system has been developed to measure the polarization of a polarized Hydrogen-Deuteride (HD) target for hadron photoproduction experiments at SPring-8. The polarized HD target is produced at the Research Center for Nuclear Physics (RCNP), Osaka university and is transported to SPring-8. The HD polarization should be monitored at both places. We have constructed the portable NMR polarimeter system by replacing the devices in the conventional system with the software system with PCI eXtensions for Instrumentation (PXI). The weight of the NMR system is downsized from 80 kg to 7 kg, and the cost is reduced to 25%. We check the performance of the portable NMR polarimeter system. The signal-to-noise (S/N) ratio of the NMR signal for the portable system is about 50% of that for the conventional NMR system. This performance of the portable NMR system is proved to be compatible with the conventional NMR system for the polarization measurement.
A new time projection chamber (TPC) was developed for neutron lifetime measurement using a pulsed cold neutron spallation source at the Japan Proton Accelerator Research Complex (J-PARC). Managing considerable background events from natural sources a nd the beam radioactivity is a challenging aspect of this measurement. To overcome this problem, the developed TPC has unprecedented features such as the use of polyether-ether-ketone plates in the support structure and internal surfaces covered with $^6$Li-enriched tiles to absorb outlier neutrons. In this paper, the design and performance of the new TPC are reported in detail.
We present a conceptual design for a polarized $^3$He target for Jefferson Labs CLAS12 spectrometer in its standard configuration. This two-cell target will take advantage of advancements in optical pumping techniques at high magnetic field to create 60% longitudinally polarized $^3$He gas in a pumping cell inside the CLAS12 5 T solenoid. By transferring this gas to a 20 cm long, 5 K target cell, a target thickness of $3 times 10^{21}$ $^3$He/cm$^2$ will be produced, reaching the detectors specified maximum luminosity with a beam current of 2.5 $mu A$.
Active-target detectors have the potential to address the difficulties associated with the low intensities of radioactive beams. We have developed an active-target detector, the Notre Dame Cube (ND-Cube), to perform experiments with radioactive beams produced at $mathit{TwinSol}$ and to aid in the development of active-target techniques. Various aspects of the ND-Cube and its design were characterized. The ND-Cube was commissioned with a $^{7}$Li beam for measuring $^{40}$Ar + $^{7}$Li fusion reaction cross sections and investigating $^{7}$Li($alpha$,$alpha$)$^{7}$Li scattering events. The ND-Cube will be used to study a range of reactions using light radioactive ions produced at low energy.
A position-sensitive, high-resolution time-of-flight detector for fission fragments has been developed. The SPectrometer for Ion DEterminiation in fission Research (SPIDER) is a $2E-2v$ spectrometer designed to measure the mass of light fission fragm ents to a single mass unit. The time pick-off detector pairs to be used in SPIDER have been tested with $alpha$-particles from $^{229}$Th and its decay chain and $alpha$-particles and spontaneous fission fragments from $^{252}$Cf. Each detector module is comprised of a thin electron conversion foil, electrostatic mirror, microchannel plates, and delay-line anodes. Particle trajectories on the order of 700 mm are determined accurately to within 0.7 mm. Flight times on the order of 70 ns were measured with 200 ps resolution FWHM. Computed particle velocities are accurate to within 0.06 mm/ns corresponding to precision of 0.5%. An ionization chamber capable of 400 keV energy resolution coupled with the velocity measurements described here will pave the way for modestly efficient measurements of light fission fragments with unit mass resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا