The proposed Circular Electron Positron Collider (CEPC), with a center-of-mass energy $sqrt{s} = 240$ GeV, will serve as a Higgs factory. At the same time, it can offer good opportunity for searches for new physics phenomena at low energy: these are challenging in hadron colliders, but well motivated by some theory models developed to explain, e.g., the relic abundance of dark matter. This paper presents sensitivity studies of chargino pair production, considering scenarios for both a Bino-like and a Higgsino-like neutralino as lightest supersymmetric particle, using full Monte Carlo (MC) simulation. With the assumption of systematic uncertainties at the level of 5%, the CEPC has the ability to discover chargino pair production up to the kinematic limit of $sqrt{s}/2$ for both considered cases. Thanks to the conservative assumptions on the systematic uncertainties and the low dependence on the reconstruction model and detector geometry considered, the results of this study can be considered as a reference and benchmark also for similar searches in other similar electron positron colliders, such as Future Circular Collider $e^{+}e^{-}$ (FCC-ee) and the International Linear Collider (ILC).