ﻻ يوجد ملخص باللغة العربية
This paper presents a high-level circuit obfuscation technique to prevent the theft of intellectual property (IP) of integrated circuits. In particular, our technique protects a class of circuits that relies on constant multiplications, such as filters and neural networks, where the constants themselves are the IP to be protected. By making use of decoy constants and a key-based scheme, a reverse engineer adversary at an untrusted foundry is rendered incapable of discerning true constants from decoy constants. The time-multiplexed constant multiplication (TMCM) block of such circuits, which realizes the multiplication of an input variable by a constant at a time, is considered as our case study for obfuscation. Furthermore, two TMCM design architectures are taken into account; an implementation using a multiplier and a multiplierless shift-adds implementation. Optimization methods are also applied to reduce the hardware complexity of these architectures. The well-known satisfiability (SAT) and automatic test pattern generation (ATPG) attacks are used to determine the vulnerability of the obfuscated designs. It is observed that the proposed technique incurs small overheads in area, power, and delay that are comparable to the hardware complexity of prominent logic locking methods. Yet, the advantage of our approach is in the insight that constants -- instead of arbitrary circuit nodes -- become key-protected.
A well-trained DNN model can be regarded as an intellectual property (IP) of the model owner. To date, many DNN IP protection methods have been proposed, but most of them are watermarking based verification methods where model owners can only verify
Training high performance Deep Neural Networks (DNNs) models require large-scale and high-quality datasets. The expensive cost of collecting and annotating large-scale datasets make the valuable datasets can be considered as the Intellectual Property
Ever since Machine Learning as a Service (MLaaS) emerges as a viable business that utilizes deep learning models to generate lucrative revenue, Intellectual Property Right (IPR) has become a major concern because these deep learning models can easily
Despite the tremendous success, deep neural networks are exposed to serious IP infringement risks. Given a target deep model, if the attacker knows its full information, it can be easily stolen by fine-tuning. Even if only its output is accessible, a
Case-based learning is a powerful pedagogical method of creating dialogue between theory and practice. CBL is particularly suited to executive learning as it instigates critical discussion and draws out relevant experiences. In this paper we used a r