ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling railway delay propagation as diffusion-like spreading

315   0   0.0 ( 0 )
 نشر من قبل Liubov Tupikina
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Railway systems form an important means of transport across the world. However, congestions or disruptions may significantly decrease these systems efficiencies, making predicting and understanding the resulting train delays a priority for railway organisations. Delays are studied in a wide variety of models, which usually simulate trains as discrete agents carrying delays. In contrast, in this paper, we define a novel model for studying delays, where they spread across the railway network via a diffusion-like process. This type of modelling has various advantages such as quick computation and ease of applying various statistical tools like spectral methods, but it also comes with limitations related to the directional and discrete nature of delays and the trains carrying them. We apply the model to the Belgian railways and study its performance in simulating the delay propagation in severely disrupted railway situations. In particular, we discuss the role of spatial aggregation by proposing to cluster the Belgian railway system into sets of stations and adapt the model accordingly. We find that such aggregation significantly increases the models performance. For some particular situations, a non-trivial optimal level of spatial resolution is found on which the model performs best. Our results show the potential of this type of delay modelling to understand large-scale properties of railway systems.



قيم البحث

اقرأ أيضاً

320 - Ming Li , Run-Ran Liu , Dan Peng 2016
Comparing with single networks, the multiplex networks bring two main effects on the spreading process among individuals. First, the pathogen or information can be transmitted to more individuals through different layers at one time, which enlarges t he spreading scope. Second, through different layers, an individual can also transmit the pathogen or information to the same individuals more than once at one time, which makes the spreading more effective. To understand the different roles of the spreading scope and effectiveness, we propose an epidemic model on multiplex networks with link overlapping, where the spreading effectiveness of each interaction as well as the variety of channels (spreading scope) can be controlled by the number of overlapping links. We find that for Poisson degree distribution, increasing the epidemic scope (the first effect) is more efficient than enhancing epidemic probability (the second effect) to facilitate the spreading process. However, for power-law degree distribution, the effects of the two factors on the spreading dynamics become complicated. Enhancing epidemic probability makes pathogen or rumor easier to outbreak in a finite system. But after that increasing epidemic scopes is still more effective for a wide spreading. Theoretical results along with reasonable explanation for these phenomena are all given in this paper, which indicates that the epidemic scope could play an important role in the spreading dynamics.
The impact that information diffusion has on epidemic spreading has recently attracted much attention. As a disease begins to spread in the population, information about the disease is transmitted to others, which in turn has an effect on the spread of disease. In this paper, using empirical results of the propagation of H7N9 and information about the disease, we clearly show that the spreading dynamics of the two-types of processes influence each other. We build a mathematical model in which both types of spreading dynamics are described using the SIS process in order to illustrate the influence of information diffusion on epidemic spreading. Both the simulation results and the pairwise analysis reveal that information diffusion can increase the threshold of an epidemic outbreak, decrease the final fraction of infected individuals and significantly decrease the rate at which the epidemic propagates. Additionally, we find that the multi-outbreak phenomena of epidemic spreading, along with the impact of information diffusion, is consistent with the empirical results. These findings highlight the requirement to maintain social awareness of diseases even when the epidemics seem to be under control in order to prevent a subsequent outbreak. These results may shed light on the in-depth understanding of the interplay between the dynamics of epidemic spreading and information diffusion.
Although there is always an interplay between the dynamics of information diffusion and disease spreading, the empirical research on the systemic coevolution mechanisms connecting these two spreading dynamics is still lacking. Here we investigate the coevolution mechanisms and dynamics between information and disease spreading by utilizing real data and a proposed spreading model on multiplex network. Our empirical analysis finds asymmetrical interactions between the information and disease spreading dynamics. Our results obtained from both the theoretical framework and extensive stochastic numerical simulations suggest that an information outbreak can be triggered in a communication network by its own spreading dynamics or by a disease outbreak on a contact network, but that the disease threshold is not affected by information spreading. Our key finding is that there is an optimal information transmission rate that markedly suppresses the disease spreading. We find that the time evolution of the dynamics in the proposed model qualitatively agrees with the real-world spreading processes at the optimal information transmission rate.
306 - Yukio Hayashi 2017
Todays economy, production activity, and our life are sustained by social and technological network infrastructures, while new threats of network attacks by destructing loops have been found recently in network science. We inversely take into account the weakness, and propose a new design principle for incrementally growing robust networks. The networks are self-organized by enhancing interwoven long loops. In particular, we consider the range-limited approximation of linking by intermediations in a few hops, and show the strong robustness in the growth without degrading efficiency of paths. Moreover, we demonstrate that the tolerance of connectivity is reformable even from extremely vulnerable real networks according to our proposed growing process with some investment. These results may indicate a prospective direction to the future growth of our network infrastructures.
It has been shown recently that a specific class of path-dependent stochastic processes, which reduce their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such Sample Space Reducing processes (SSRP) offer an alternative new mechanism to understand the emergence of scaling in countless processes. The corresponding power law exponents were shown to be related to noise levels in the process. Here we show that the emergence of scaling is not limited to the simplest SSRPs, but holds for a huge domain of stochastic processes that are characterized by non-uniform prior distributions. We demonstrate mathematically that in the absence of noise the scaling exponents converge to $-1$ (Zipfs law) for almost all prior distributions. As a consequence it becomes possible to fully understand targeted diffusion on weighted directed networks and its associated scaling laws law in node visit distributions. The presence of cycles can be properly interpreted as playing the same role as noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipfs law emerges as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting times is related to the amount of cycles in a network could be relevant for a series of applications in traffic-, transport- and supply chain management.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا