Evidence for nesting driven charge density waves instabilities in a quasi-two-dimensional material: LaAgSb2


الملخص بالإنكليزية

Since their theoretical prediction by Peierls in the 30s, charge density waves (CDW) have been one of the most commonly encountered electronic phases in low dimensional metallic systems. The instability mechanism originally proposed combines Fermi surface nesting and electron-phonon coupling but is, strictly speaking, only valid in one dimension. In higher dimensions, its relevance is questionable as sharp maxima in the static electronic susceptibility chi(q) are smeared out, and are, in many cases, unable to account for the periodicity of the observed charge modulations. Here, we investigate the quasi twodimensional LaAgSb2, which exhibits two CDW transitions, by a combination of diffuse xray scattering, inelastic x-ray scattering and ab initio calculations. We demonstrate that the CDW formation is driven by phonons softening. The corresponding Kohn anomalies are visualized in 3D through the momentum distribution of the x-ray diffuse scattering intensity. We show that they can be quantitatively accounted for by considering the electronic susceptibility calculated from a Dirac-like band, weighted by anisotropic electron-phonon coupling. This remarkable agreement sheds new light on the importance of Fermi surface nesting in CDW formation.

تحميل البحث