ﻻ يوجد ملخص باللغة العربية
CMOS sensors were successfully implemented in the STAR tracker [1]. LHC experiments have shown that efficient b tagging, reconstruction of displaced vertices and identification of disappearing tracks are necessary. An improved vertex detector is justified for the ILC. To achieve a point(spatial single layer) resolution below the one-{mu}m range while improving other characteristics (radiation tolerance and eventually time resolution) we will need the use of 1-micron pitch pixels. Therefore, we propose a single MOS transistor that acts as an amplifying device and a detector with a buried charge-collecting gate. Device simulations both classical and quantum, have led to the proposed DoTPiX structure. With the evolution of silicon processes, well below 100 nm line feature, this pixel should be feasible. We will present this pixel detector and the present status of its development in both our institution (IRFU) and in other collaborating labs (CNRS/C2N).
Using the simulation framework of the SiD detector to study the Higgs -> mumu decay channel showed a considerable gain in signal significance could be achieved through an increase in charged particle momentum resolution. However more detailed simulat
CMOS Pixel Sensors tend to become relevant for a growing spectrum of charged particle detection instruments. This comes mainly from their high granularity and low material budget. However, several potential applications require a higher read-out spee
The EUDET-project was launched to create an infrastructure for developing and testing new and advanced detector technologies to be used at a future linear collider. The aim was to make possible experimentation and analysis of data for institutes, whi
Monolithic Active Pixel Sensors (MAPS) have been developed since the late 1990s employing silicon substrate with a thin epitaxial layer in which deposited charge is collected by disordered diffusion rather than by drift in an electric field. As a con
CMOS Pixel Sensors are making steady progress towards the specifications of the ILD vertex detector. Recent developments are summarised, which show that these devices are close to comply with all major requirements, in particular the read-out speed n